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APPLYING THE WRAPPER APPROACH FOR AUTO DISCOVERY OF UNDER-SAMPLING & 

OVER-SAMPLING PERCENTAGES ON SKEWED DATASETS 

Ajay D. Joshi 

ABSTRACT 

Machine learning applications are plagued by the imbalance observed among the class sizes in many real 

world datasets. A dataset is said to be skewed or imbalanced when its classes are very unequally 

represented. A naïve classifier learned from these skewed datasets is always biased towards the majority 

classes which constitute a major percentage of the samples in the dataset. As a result the accuracy on the 

minority classes is hampered. In many real world applications like network intrusion detection, cancer 

detection from mammography images, etc. the events of interest are very rare and the cost of not detecting 

these events is very high. Hence it very important to improve accuracies on the minority classes. It has been 

proposed previously that under-sampling of the majority classes can reduce the bias of the learned classifier 

and over-sampling of the minority classes - especially SMOTE (Synthetic Minority Over-sampling 

TEchnique) can boost the classifier accuracy on minority classes. But the question of how much under-

sampling and over-sampling to be done for a particular induction learning algorithm and dataset remains. 

We present a wrapper approach for searching for the under-sampling and over-sampling (i.e. SMOTE) 

percentages for a particular learning algorithm for a given skewed dataset. We compare the results obtained 

by the classifiers built on wrapper selected under-sampled and SMOTEd datasets with the ones obtained by 

classifiers built on the original datasets to show a statistically significant improvement in accuracies over 

minority classes. This proves the efficacy of the wrapper approach in searching for the under-sampling and 

over-sampling percentages. Further, it provides an automated method to select the number of synthetic 

examples to be created. 
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CHAPTER 1 

INTRODUCTION 

The past decade has seen a remarkable increase in the amount of information being stored and distributed 

in electronic format over the internet [1]. With the increase in use of automated electronic data gathering 

and remote sensing devices, with the falling prices of data storage and computing power, data collection 

has become very cheap and has contributed to the explosion of accessible data. This has provided the Data 

Mining community with an exceptional opportunity for extracting nontrivial implicit information from 

massive datasets. In spite of this huge amount of real world data, only some of the data instances are of 

interest and usually they are in the minority. These data instances constitute the minority classes, while the 

remaining instances make up the majority classes. These kinds of datasets sets are called skewed or 

imbalanced datasets. Many machine learning datasets such as network intrusion detection, fraud transaction 

detection, medical diagnostics, etc. are hard to learn from without a significant bias towards the majority 

classes. In addition, many times the cost of misclassifying the interesting data instances in the minority 

classes as belonging to other majority classes is much higher than the cost of the reverse error.  

For example, in network intrusion detection applications, where the illegal activity on the network is 

usually a very small percent of the normal activity, the aim of the application is to catch all network 

intrusions including the unseen network attacks by continuously monitoring for any unusual user activity 

and to keep a low false alarm rate. The issue of detecting future novel attacks has led to an escalating 

interest in data mining techniques for intrusion detection [2] [3] [4] [5] [6]. In the case of medical 

diagnosis, the cost of a false positive diagnosis generally results only in putting the patient through 

unnecessary medical tests whereas the result of a false negative diagnosis can be fatal. To make matters 

worse, normally the datasets on which medical diagnostic applications are built are also imbalanced as in 

the case of detecting the pixels in mammography images as cancerous or normal [7] [8] [9], where the 
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abnormal cancerous pixels are only a very small fraction of the total pixels. Previous studies related to 

fraud detection [10] have revealed an imbalance in the data of the order of 100 to 1. In some high energy 

physics applications [10] there is a 10,000 to 1 imbalance between the majority and minority classes. Some 

research in the domains of fraudulent telephone calls [11], telecommunication management [12], text 

classification [13] and detection of oil spills in satellite images [14] has been done to deal with the problem 

of imbalanced datasets. All these applications require a reasonably high detection rate for the minority 

classes and a minimal error rate for the majority classes. 

The recent interest in the class imbalance problem has led to two special workshops held at AAAI in 

2000 [15] and ICML in 2003 [16], and a special issue newsletter from SIGKDD Explorations [17] on 

learning from imbalanced datasets. Researchers in the machine learning community have dealt with the 

problem of class imbalance with various approaches like over-sampling the minority classes, 

under-sampling the majority classes, assigning different costs for different misclassification errors, learning 

by recognition as opposed to discrimination, etc. Lots of research has been done in comparing the various 

sampling methods and even a question of whether sampling is becoming the de facto standard for 

countering the imbalance in datasets has been raised in the special issue SIGKDD Explorations [17] 

editorial. With all this there is still no research on finding the approach to sampling required to get good 

classifier accuracies on minority classes. This provides us the motivation for our research.  

The remainder of the thesis is organized into chapters as follows: Chapter 2 discusses some of the 

important previous work on the approaches used in alleviating the class imbalance problem and their 

limitations, the wrapper approach and its uses in different scenarios, how we intend to use wrappers and 

finally the performance metrics used in our study. Chapter 3 presents our wrapper Under-sample SMOTE 

algorithm used for finding the under-sampling and SMOTEing percentages for the skewed datasets. 

Chapter 4 provides a description of the datasets used in our study and presents experimental results which 

confirm the applicability of our approach. Chapter 5 discusses conclusions and proposes directions for 

future work. 
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CHAPTER 2 

RELATED WORK 

2.1. The Class Imbalance Problem and Solutions 

As discussed in the Introduction chapter, the problem with the imbalanced class distribution observed in 

many real world data applications is significant and a lot of research has been done on this problem. The 

researchers have dealt with the problem of class imbalance using two main approaches. The first one is to 

assign distinct costs to training examples [15] [19] and the other is to re-sample the original dataset by 

either over-sampling or SMOTEing the minority classes and / or under-sampling the majority classes [7] 

[13] [20] [21] [22]. The details of these approaches and a few other important strategies are discussed in the 

following subsections. 

2.1.1. Over-Sampling with Re-Sampling of Minority Classes  

Over-sampling of minority classes can be done by re-sampling the examples from minority classes thus 

increasing the bias of the learned classifier towards them and increasing the accuracy on minority classes. 

Japkowicz [22] has experimented with over-sampling the minority classes in several artificial one 

dimensional datasets with varying concept complexities using multi-layered perceptrons and has found the 

approach effective in datasets with complex concepts. She has used two re-sampling methods, random 

re-sampling in which the minority class is re-sampled randomly until it consists of as many examples as the 

majority class and focused re-sampling in which only examples which occur on the boundary of minority 

and majority classes are re-sampled. Focused re-sampling was found to give no clear advantage over the 

random re-sampling. Similarly, Ling and Li [21] have used the over-sampling approach in the direct 

marketing domain. They have used ada-boosted Naïve Bayes and ada-boosted C4.5 with lift analysis as a 

measure of a classifier’s performance on three real world datasets: a loan product promotion dataset and 

two datasets one from a major life insurance company and another from a company which ran “bonus 



www.manaraa.com

 

 4

programs”. They found that over-sampling of the minority class did not significantly improve the classifiers 

performance. There was some improvement for ada-boosted C4.5, but none for the ada-boosted Naïve 

Bayes classifier. This difference in performance for different learning algorithms shows that the amount of 

over-sampling done could also be a function of the type of inductive learning algorithm used to build the 

classifier in addition to the order of imbalance and the complexity of the dataset. 

2.1.2. Under-Sampling of Majority Classes 

Under-sampling the majority class can reduce the bias of the learned classifier towards it and thus improve 

the accuracy on the minority classes. Kubat and Matwin [20]  have provided an intelligent solution for 

doing selective under-sampling of the majority class in a two class problem. The majority class examples 

are divided into four categories: safe, redundant, borderline and class-label noise examples. The redundant 

examples are eliminated using the 1-NN rule while the borderline and class-label noise examples are 

removed using the concept of Tomek links [23]. Thus this one-sided selection method removes examples 

from the majority class while leaving the minority class untouched. The evaluation of the trained classifiers 

was done using a geometric mean of accuracy on minority and majority classes. From the results, it was 

found that the under-sampling approach was effective, as there was a significant improvement in 

performance measures over most of the testbed datasets. 

2.1.3. Assignment of Different Costs for Different Misclassification Error 

The relative importance of different kinds of errors can be represented by a cost matrix. Suppose there are 

C classes, we have a C x C cost matrix, where the value in row i and column j gives the cost or loss of 

predicting a case to belong to class i, when it actually belongs in class j. Normally the cost is zero when i 

equals j and one when i is not equal to j, which gives us the normal classification error-rate. If the cost is 

one if i equals j and zero otherwise, then the cost measure is the common classification accuracy measure. 

Several studies in the literature have proposed approaches for finding optimal cost matrices which assign 

higher costs for misclassification of cases from minority classes and lower cost otherwise. One such study 

was done by Domingos, who proposed a method for making an arbitrary classifier cost-sensitive by 

wrapping a cost-minimizing procedure, called MetaCost [15], around it.  A close connection between cost-

sensitive approaches and sampling techniques has be found by [24][25]. 
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2.1.4. Learning by Recognition 

In this approach the classification of the examples is done using a recognition-based inductive scheme 

instead of the discrimination-based scheme where one of the two classes is mostly ignored i.e.  examples 

from that class are not used in the training process. Japkowicz et al. [23] have proposed a Novelty 

Detection technique for concept learning which proceeds by recognizing the examples from one class 

rather than differentiating between the examples from two classes. The approach involves training an auto-

encoder – a multi-layered perceptron to reconstruct the examples from one class at the output layer and 

then using the auto-encoder to recognize novel examples. The auto-encoder recreates the input with small 

error if it belongs to the class the auto-encoder is built upon or large error if it came from the other class. 

Japkowicz [22] built two auto-encoders, one on the majority class and the other on the minority class but 

failed to reach the performance obtained by either the random over-sampling or random under-sampling 

approaches. Tax [26] has done similar research using SVM which was found to be competitive [27] with 

other recognition based learners. 

2.1.5. Discussion 

Some studies [21] [22] have been done which combined under-sampling of majority classes with 

over-sampling by replication of minority classes. While Japkowicz [22] had found this approach very 

effective, Ling and Li [21] were not able to get significant improvement in their performance measures. 

Japkowicz [22] had experimented with only one-dimensional artificial data of varying complexity whereas 

Ling and Li [21] had used real data from a Direct Marketing problem. This might have been the reason for 

the discrepancy between their results. On the whole from the body of literature, it was found that 

under-sampling of majority classes was better than over-sampling with replication of minority classes and 

that combination of the two did not significantly improve the performance over under-sampling alone.  

But later, Chawla et al. [7] introduced a new over-sampling approach for a two class problem that 

over-sampled the minority class by creating synthetic examples rather than replicating examples. They 

pointed out the limitation of the over-sampling with replication in terms of the decision regions in feature 

space for decision trees. They concurred that as the minority class was over-sampled by increasing 

amounts, for decision trees, the result was to identify similar but more specific regions in the feature space 
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as the decision regions for the minority class. This can be observed in the decision region plots for decision 

trees on the mammography dataset using 2 attributes as shown in Figure 2-1 [7] and Figure 2-2 [7]. 

 
Figure 2-1. Decision Region for Majority Class Containing Three Minority Class Examples: 

Mammography Dataset 

 
Figure 2-2. Very Specific Decision Regions for Three Minority Class Examples in Solid Line 

Rectangular Boxes: Mammography Dataset 

From Figure 2-1 [7], in which the majority class samples are indicated by the ‘o’ marker and minority 

class samples by ‘+’ marker, the region encapsulated by the solid line rectangle is the majority class 

decision region.  It can be seen that this region includes three minority class samples i.e. the decision tree is 

misclassifying those minority class samples. But when the minority class is over-sampled using replication 

of the minority samples, it causes more splits in the decision tree leading to more terminal nodes/leaves as 

 6
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the decision tree learning algorithm tries to fit more and more similar minority class data. This results in 

over-fitting the data and makes the decision regions for the minority class very specific. This is evident in 

Figure 2-2 [7], where it can be seen that the three previously misclassified minority class samples are 

classified correctly, but at the expense of very specific decision regions around them. Though one gets 

better accuracy for minority classes on training data, this does not hold true on the unseen test data. What 

we want is that the decision region for the minority class spreads into the majority class region as much as 

possible without much reduction, if any, in majority class accuracy; and thus be able to generalize well over 

unseen minority class data. The new approach called Synthetic Minority Over-sampling TEchnique 

(SMOTE) [7] overcomes the problem of specific decision regions by creating synthetic examples in the 

vicinity of the present minority class examples. A detailed description of this approach for over-sampling 

the minority classes, which is the approach used in our study, follows in the next section. 

2.2. Synthetic Minority Over-sampling TEchnique (SMOTE)  

The introduction of this approach of over-sampling for the minority class was inspired by a similar 

technique which was successful in handwritten character recognition [29]. The over-sampling was done by 

selecting “each minority class example and creating a synthetic example along the line segment joining the 

selected example and any/all of the k minority class nearest neighbors” [7, p.328]. In the calculations of the 

nearest neighbors for the minority class examples “a Euclidean distance for continuous features and the 

value Distance Metric (with the Euclidean assumption) for nominal features” [9, p.2] was used. For 

examples with continuous features, the synthetic examples are generated by taking the difference between 

the feature vectors of selected examples under consideration and their nearest neighbors.  The difference 

between the feature vectors is multiplied by a random number between 0 and 1 and then added to the 

feature vector of the example under consideration to get a new synthetic example. For nominal valued 

features, a majority vote for the feature value is taken between the example under consideration and its k 

nearest neighbors [7]. This approach effectively selects a random point along the line segment between the 

two feature vectors.  This strategy forces the decision regions of the minority class learned by the classifier 

to spread and effectively provides better generalization performance on unseen data. This can be seen in 

Figure 2-2 [7], where the region encapsulated by the dashed line rectangle is the decision region for the 
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minority class. This approach also reduces the size of the decision tree as the classifier does not learn 

specifics of the data by reducing over-fitting. 

 Chawla et al. [7]  experimented with a combination of under-sampling of the majority class and 

SMOTE for the minority class, and found that the combination of both approaches performed better than 

under-sampling alone. However, the question of how much under-sampling and over-sampling to be done 

for a given dataset was not answered and our study tries to answer this very question. 

The pseudo code1 for generation of new synthetic minority class samples is shown in Figure 2-3 [9].  

 

Figure 2-3. SMOTE Algorithm [9] 

Algorithm SMOTE (T, N, k) 

Input: Number of minority class samples T;  

Amount of SMOTE N%;  

Number of nearest neighbors k (k = 5 is used in our experiments) 

Output: (N/100) * T synthetic minority class samples 

1. (* If  N is less than 100%, randomize the minority class samples as only a random percent 

of them will be SMOTEd. *) 

2. if N < 100 

3. then Randomize the T minority class samples 

4. T = (N/100) * T 

5. N = 100 

6. end if 

7. N = (int)(N/100) (* The amount of SMOTE is assumed to be in integral multiples of 100 *) 

8. k = Number of nearest neighbors 

9. numattrs = Number of attributes 

10. Sample[][]: array for original minority class samples 

11. newindex: keeps count of the number of synthetically generated samples; it is initialized to 0 

12. Synthetic[][]: array of  synthetic samples  

(* Compute k nearest neighbors for each minority class sample only *) 

13. for i ← 1 to T 

14.       Compute k nearest neighbors for i, and save the indices in the nnarray 

15.       Populate(N, i, nnarray) 

16. end for 

 8

                                                 
1 SMOTE Perl script acquired from Nitesh Chawla (chawla@morden.csee.usf.edu) 
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Figure 2-3.  SMOTE Algorithm Contd. [9] 

Populate (N, i, nnarray) (* Function to generate the synthetic samples. *) 

1. while N ≠ 0 do 

2. choose a random number between 1 and k, call it nn. This step chooses one of the k 

nearest neighbors of i. 

3. for attr ← 1 to numattrs 

4. if attr = =  Continuous feature 

5. Compute: dif = Sample[nnarray[nn]][attr] – Sample[i][attr] 

6. Compute: gap = random number between 0 & 1 

7. Synthetic[newindex][attr] = Sample[i][attr] + gap * dif 

8. else 

9. attr_value = majority vote for the attr value from k nearest neighbors. If no majority 

then choose at random. 

10. Synthetic[newindex][attr] = attr_value 

11. end if 

12. end for 

13. newindex++ 

14. N = N – 1 

15. end while 

16. return (* End of Populate *) 

End of Pseudo-Code  

 9
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2.3. The Wrapper Approach 

Kohavi et al. [30] were the first to introduce the wrapper approach to the mainstream Data Mining 

community.  They successfully used the wrapper approach to search for an optimal feature subset 

customized to a specific induction learning algorithm and domain. The idea behind the wrapper approach is 

very simple and is shown in Figure 2-4, where the induction learning algorithm which is used as a black 

box is run repeatedly on a distinct portion of the dataset using various feature subsets. Some performance 

measure is used to evaluate the classifier built on each feature subset using a set aside distinct portion of the 

dataset, and the feature subset with the highest evaluation is used as the final set to build the final classifier 

on all the data instances in the training set. The resulting classifier can then be evaluated on an independent 

test set that is not used during the search process to assess the efficacy of the wrapper approach in selecting 

the feature subset. 

 

 

Figure 2-4. The Wrapper Approach to Feature Subset Selection 

 

After Kohavi et al. successfully used the wrapper approach in the feature subset selection problem, 

there were many researchers who experimented with the wrapper approach in various contexts. Langley 

and Sage [31] used the wrapper approach in selecting the features for a Naïve-Bayes classifier. Pazzani [32] 

created super-features by combining the base features for a Naïve-Bayes classifier by using the wrapper 

approach and demonstrated that it really was able to find the correct combination of features when they 

interacted.  A significant improvement over the original K2 algorithm was shown by Singh and Provan [33]  

 10
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when they selected the features for Bayesian networks using the wrapper approach. Again, Kohavi and 

John [34] demonstrated the use of the wrapper with other search methods using probabilistic estimates for 

feature subset selection. 

Other than feature selection, the wrapper approach has been used for many other problems. Kohavi 

and John [35] applied the wrapper approach for tweaking the parameters of C4.5 for maximal performance. 

The wrapper approach was used by Skalak [36] in an interesting fashion to select the training instances 

(prototype subset) instead of the features in connection with nearest-neighbor classifiers. 

Our algorithm, which searches for under-sampling and over-sampling percentages for minority and 

majority classes respectively, includes a modified version of the wrapper algorithm. 

2.4. Measurements and Metrics 

Traditionally, the performance evaluation of machine learning algorithms was done using just the 

predictive classification accuracy, which did not capture the essence of recognizing the minority classes in 

skewed datasets with diverse costs of errors. In skewed datasets, where the majority class constitutes about 

98% - 99% of all the data instances, a trivial classifier which predicts everything as belonging to the 

majority class can achieve an accuracy of 98% - 99% which appears great on the surface. So it is apparent 

that for domains with imbalanced distributions, classification accuracy is not an appropriate performance 

measure. Previous studies involving imbalanced datasets have used various different performance measures 

suitable to this type of problem. For example, Kubat and Matwin [15] used the geometric mean of 

accuracies measured on the minority and majority class with the idea to improve the accuracy on both 

classes while keeping them balanced. But this metric did not take into account the different costs for 

different misclassification errors. Several studies [7] [37] [38] [39] have used ROC (Receiver Operating 

Characteristics) analysis as a standard technique for summarizing the classifiers performance over a range 

of tradeoffs between true positives and false negatives and AUC (Area Under the Curve) as the 

performance metric for ROC curves. In [7], for generation of ROC curves, the data set was SMOTEd for 

minority classes at a specific percentage while the under-sampling of the majority class was done over a 

range of percentages ranging from 0% to 100% to get the points on the ROC curve. Then the SMOTE 

percentage, which was used to SMOTE the dataset for the minority class which yielded the best AUC 
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measure, was selected as the best SMOTE percentage.  Thus the AUC measure gives the best SMOTE 

percentage for an under-sampled percentage of the majority class ranging from 0% to 100%. But what we 

are really interested in, is the specific amount of SMOTE and under-sampling percentages i.e. a single point 

on the ROC curve that will give us the best tradeoff between the true positives and false positives. The 

AUC measure does not provide that, and so is not considered to be an appropriate performance measure 

here. Also the AUC measure does not take into account the cost of classifying a positive case as negative 

(FN) and also is very hard to extend for multiple class problems.  

The F-value [40] [41] measure which takes into consideration the false positives and false negatives 

along with true positives was the right metric for our study. A confusion Matrix as shown in Table 2-1 is 

used in calculation of the F-value.  In our case the minority class under consideration is deemed as the 

positive class, whereas all other classes together constitute the negative class. 

Table 2-1.  Confusion Matrix Defining Four Possible Classification Scenarios 

 Predicted Positive Class Predicted Negative Class 

Actual Positive class True Positives (TP) False Negatives (FN) 

Actual Negative Class False Positives (FP) True Negatives (TN) 

 

 The F-value metric incorporates two other measures: Precision which gives us the measure of 

correctness of the classifier in predicting the actual positive or minority class, whereas Recall gives us the 

measure of the percentage of positive or minority class examples predicted correctly. Using the Table 2-1, 

Precision, Recall and F-value are calculated as follows: 

(FP) Positives False (TP) Positives True
 (TP) Positives True Precision 

+
=  (2.1) 

(FN) Negatives False (TP) Positives True
 (TP) Positives True  Recall

+
=  (2.2) 

PrecisionRecall 
PrecisionRecall )(1  value-F

2

2

××
××+

=
β
β  (2.3) 

Where β controls the relative importance assigned to recall and precision. 

For any machine learning algorithm, it is desirable to improve the recall without sacrificing the 

precision. However, the optimal independent parameter settings to optimize for Recall or Precision are 
 12
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often conflicting and optimizing both of them simultaneously may be difficult. Both of these measures are 

included by the F-value and so the goodness of the classifier can be measured by the F-value.  

2.5. Discussion 

From the previous research on boosting accuracy for minority classes, a combination of over-sampling of 

minority classes using SMOTE and under-sampling of majority classes has been found effective. However, 

a method to find how much to SMOTE and under-sample is still not known. The wrapper approach has 

been successfully used in many domains viz. searching for the optimal feature subset, tuning parameters of 

induction learning algorithms, etc. So in this study we have used the wrapper approach in searching for 

SMOTE percentages for minority classes and under-sampling percentages for majority classes, guided by 

the F-value as a performance metric, for a specific induction learning algorithm on imbalanced datasets. 

The next chapter presents the Wrapper Under-sample SMOTE algorithm. 
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CHAPTER 3 

WRAPPER UNDER-SAMPLE SMOTE ALGORITHM 

As indicated in the previous chapter, our Wrapper Under-sample SMOTE algorithm uses the wrapper 

approach in searching for the best under-sampling and SMOTE percentages. From previous work, under-

sampling was found to be better than over-sampling with replication. Testing for each pair of under-

sampling and SMOTE percentages will result in a search space of intractable size, and hence the 

information from previous studies is used as a heuristic for the search where searching for under-sampling 

percentages is done first then followed by a search for the SMOTE percentages. This strategy will first 

remove the “excess” majority class examples which will result in a reduction in the size of the training 

dataset and thus reduce the learning time required to build the classifier. Then over-sampling of the 

minority class examples will add synthetic minority class examples and increase the generalization 

performance of the classifier over the minority classes. Figure 3-1 shows our Wrapper Under-sample 

SMOTE algorithm 2 which can handle multiple majority and minority classes. 

We have also experimented with a Brute Force Search method which varies both the under-sampling 

and the SMOTE percentage simultaneously over a discrete search space and covers all discrete valued 

combinations of under-sampling and SMOTE percentage pairs. Due to its time consuming nature we have 

tested this strategy on only two datasets. The details about this technique and comparison of results to our 

algorithm are presented in a later section of Chapter 4. 

 
2 Perl scripts and datasets can be acquired at http://morden.csee.usf.edu/wrapsmote/ 
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Figure 3-1. Wrapper Under-sample SMOTE Algorithm 
 

Algorithm WRAPPER_UNDERSAMPE_SMOTE (MinorList, MajorList, NoFolds) 

Input: List of minority classes MinorList 

List of majority classes MajorList 

Number of cross-validation folds NoFolds 

Output: Wrapper selected UnderSampling percentages for majority classes and 

Wrapper selected SMOTE percentages for minority classes 

1. Set the under-sampling percentage for the majority class to 100% (No under-sampling) in 

UnderSampleList and the smoting percentage for the minority class to 0 (No Smote) in 

SmoteList 

2. Do NoFolds cross-validation on the training data without under-sampling and smote and get 

baseline MinorFvalues & MajorFvalues and assign them to BestMinorFvalues and 

BestMajorFvalues 

3. if MajorList is not empty 

4. then WRAPPER_UNDERSAMPLE(UnderSampleList)  

5. end if 

6. if MinorList is not empty 

7. then WRAPPER_SMOTE(SmoteList)  

8. end if 

3.1. Wrapper Based Algorithm to Select Under-sampling Percentages 

This algorithm implements a wrapper which performs the search through the parameter space of under-

sampling percentages for the majority class(es), using the chosen induction learning algorithm as a part of 

the evaluation function for a five-fold cross-validation over the training data. The purpose of the wrapper is 

to search for the state in the parameter space with the highest evaluation score guided by some heuristic 

function. Since the actual performance of the classifier will be assessed on the training data only, the 

estimated performance over a five fold cross-validation is utilized in the heuristic function in guiding the 

search process. 

The wrapper starts with no under sampling for all majority classes and obtains baseline results on the 

training data. Then in a step-by-step greedy fashion it traverses through the search space of under-sampling 

percentages to seek better performance over the minority classes. The search process continues as long as it 

 15
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does not hamper the accuracy of the minority classes (normally the accuracy of the minority classes 

increases) or drop the accuracy over majority classes more than some specified amount (generally 5%).  

Table 3-1. Hypothetical Scenario 1 – Performance Metrics 

Baseline 
Actual 
Minority 
Class 

Actual 
Majority 
Class 

 After under-
sampling 

Actual 
Minority 
Class 

Actual 
Majority 
Class 

Predicted 
Minority class 119 51  Predicted 

Minority class 131 66 

Predicted 
Majority Class 115 9779  Predicted 

Majority Class 103 9764 

       
F-value minority class 0.589  F-value minority class 0.608 
F-value majority class 0.992  F-value majority class 0.991 

 

Table 3-2. Hypothetical Scenario 2 – Performance Metrics 

Baseline 
Actual 
Minority 
Class 

Actual 
Majority 
Class 

 After under-
sampling 

Actual 
Minority 
Class 

Actual 
Majority 
Class 

Predicted 
Minority class 119 51  Predicted 

Minority class 122 66 

Predicted 
Majority Class 115 9779  Predicted 

Majority Class 112 9764 

       
F-value minority class 0.589  F-value minority class 0.578 
F-value majority class 0.992  F-value majority class 0.991 
 

For example, from the hypothetical scenario 1 as shown in Table 3-1, one can see that after under-

sampling the majority class, the F-value on the minority class is increased by 1.9% points from 0.589 

baseline F-value at an expense of only 0.1% points drop in the majority class F-value. In cases like this, the 

wrapper algorithm continues to under-sample the majority class at higher under-sampling percentages until 

the average F-value over the majority classes falls below some specified amount. But sometimes as in 

scenario 2 in Table 3-2, when under-sampling of the majority class is performed, the F-value on the 

minority class can be reduced due to a high reduction in precision versus a small increase in recall. So to 

catch both these conditions in multiple minority/majority class problems we use average F-value of 

minority classes and majority classes in our heuristic function. After one of the conditions is met, the 

wrapper search for under-sampling is terminated and the search for SMOTE percentage for minority 

classes begins.  The details of this algorithm are presented in Figure 3-2. 
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Figure 3-2. Wrapper Under-sample Algorithm 

WRAPPER_UNDERSAMPLE(UnderSampleList) (* The Function implements a wrapper to 

search for the best under-sampling percentage for majority classes. *) 

1. foreach MClass in MajorList (*MajorList contains one or more majority  classes *) 

2. StopUnderSamplingFlag[MClass] = false 

3. end foreach 

4. do  

5. foreach MClass in MajorList 

6. if StopUnderSamplingFlag[MClass] = false 

7. UnderSampleList[MClass] = UnderSampleList[MClass] – x; (* generally 10% *)   

8. for Fold ← 1 to NoFolds (* NoFolds cross-validation runs *) 

9. OutputTrainingData(Fold, UnderSampleList) 

10. OutputTestingData(Fold) 

11. Build classifier on the under-sampled training set and evaluate on validation set 

12. end for 

13. Update MinorFvalues & MajorFvalues 

14. if Average(MinorFvalues) < Average(BestMinorFvalues) 

15. UnderSampleList[MClass] = UnderSampleList[MClass] + x; (* reset to previous*) 

16. StopUnderSamplingFlag[MClass] = true 

17. else if Average(MajorFvalues) < Average(BestMajorFvalues) * LossFactor (* 5% *)  

18. UnderSampleList[MClass] = UnderSampleList[MClass] + x; (* reset to previous*) 

19. StopUnderSamplingFlag[MClass] = true 

20. else 

21. Update BestMinorFvalues  

22. end if 

23. end if 

24. end for 

25. while (StopUnderSamplingFlag for atleast one MClass = false)  (* Exit the loop when 

StopUnderSamplingFlag for all majority classes is set to true *) 

26. return (* End of WRAPPER_UNDERSAMPLE *) 
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3.2. Wrapper Based Algorithm to Select SMOTE Percentages 

This algorithm is very similar to the Wrapper Under-sample algorithm. The under-sampling percentages for 

the majority classes are now fixed to those found so far by the Wrapper Under-sample algorithm and the 

corresponding best F-value results for minority classes are baselined. Now the Wrapper SMOTE algorithm 

continues to step through the search space for the SMOTE percentage of minority classes in a greedy 

fashion and obtains new performance estimates using the five-fold cross-validation over the training data. If 

the average F-value over the minority classes is improved, then the current results are again baselined, and 

the search continues to find even better SMOTE percentage combinations for the minority classes. In some 

scenarios, even if the average F-value for the minority classes over five-fold cross-validation is reduced it 

can be attributed to the randomness of SMOTEing. Also assuming that more SMOTE will add more 

information and will give better accuracies over minority classes (though not always) true, we look ahead 

in the parameter search space by SMOTEing minority classes at higher SMOTE percentages. This 

sometimes results in a better true positive rate at an increased false positive rate which is normally 

acceptable in domains with imbalanced datasets. The search for the SMOTE percentage for a minority class 

stops when the average F-value for the minority classes cannot be improved even after two look aheads at a 

higher SMOTE percentage are performed. The pseudo code for the wrapper SMOTE algorithm is presented 

in Figure 3-3. 

One may note that we do not perform a look ahead for under-sampling, as we believe that under-

sampling effectively reduces the information contained in the data and thereby reduces accuracy by 

reducing the coverage of the built classifier. The sole purpose of under-sampling is to reduce the 

redundancy of majority class examples without much reduction in the accuracy over all classes.  
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Figure 3-3.  Wrapper SMOTE Algorithm 

WRAPPER_SMOTE(SmoteList) (* The Function implements a wrapper to search for best 

SMOTE percentage for minority classes. *) 

1. foreach MClass in MinorList  (*MinorList  contains one or more minority classes *) 

2. StopSmoteFlag[MClass] = false 

3. LookupAhead[MClass] = 1 

4. end foreach 

5. do  

6. foreach MClass in MinorList   

7. if StopSmoteFlag[MClass] = false 

8. SmoteList[MClass] = SmoteList [MClass] +  LookupAhead[MClass] x y;  

(* y generally 100% *)  

9. for Fold ← 1 to NoFolds (* NoFolds cross-validation runs *) 

10. OutputTrainingData(Fold, UnderSampleList , SmoteList) 

11. OutputTestingData(Fold) 

12. Build classifier on under-sampled and SMOTEd training set and evaluate on 

validation set 

13. end for 

14. Update MinorFvalues & MajorFvalues 

15. if Average(MinorFvalues) < Average(BestMinorFvalues) 

16. SmoteList[MClass] = SmoteList [MClass] - y; (* reset to previous SMOTE*) 

17. if LookupAhead[MClass] < LookupAheadValue (* generally 3 *) 

18. LookupAhead[MClass] = LookupAhead[MClass] + 1 

19. else 

20. StopSmoteFlag[MClass] = true 

21. else 

22. Update BestMinorFvalues 

23. end if 

24. end if 

25. end for 

26. while (StopSmoteFlag for atleast one MClass = false)   (* Exit the loop when 

StopSmoteFlag for all minority classes is set to true *) 

27. return (* End of WRAPPER_UNDERSAMPLE *)   

End of Pseudo-Code 
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3.3. Cross-Validation of System  

We have presented an approach for searching under-sampling and SMOTE percentages for imbalanced 

datasets, which when used to build classifiers will result in improved accuracy on minority classes over 

unseen data. Since the algorithm does not have access to unseen data, it uses five-fold cross-validation over 

training data as an evaluation function in forecasting the estimated accuracy over unseen data. These 

accuracy estimates will hold true only when either the training data is a good representative of the actual 

data distribution or the wrapper strategy does not over-fit the training data. If the training data is not a good 

representative of the actual data, no strategy can help. So the only thing which remains is to see whether  

the wrapper approach finds under-sampling and SMOTE levels which when used to build a classifier, do 

not over-fit the training data. 

To ascertain that the wrapper approach is really able to get good under-sampling and SMOTE 

percentages, we do a ten-fold cross-validation in which the original dataset is stratified into ten disjoint sets 

from which ten distinct testing sets and ten training sets are created. The wrapper Under-sample SMOTE 

algorithm which uses five-fold cross-validation of the training set finds the under-sampling and SMOTE 

percentages for a particular training fold dataset (one of the ten folds for cross-validating the system). Then 

the whole training set is under-sampled and SMOTEd with wrapper selected percentages, a classifier is 

built on the updated training data and evaluated on the test data unseen during the wrapper process. Due to 

the inherent random nature of under-sampling and SMOTEing, to get a fair estimate of the performance 

obtained on the testing set, the process of training and testing with wrapper selected under-sampling and 

SMOTE percentages is done for a total of five times to get an averaged (more stable) accuracy measure.  

The wrapper Under-sample SMOTE algorithm is run on total ten training sets to obtain a total of ten 

pairs of under-sampling and SMOTE percentages. These ten pairs of wrapper selected under-sampling and 

SMOTE percentages are evaluated on corresponding ten testing sets as explained above to cross-validate 

the whole system. To summarize, on each of the 10 folds, training and testing for wrapper selected SMOTE 

and under-sampling percentage is done five times i.e. SMOTE and under-sampling is done for a total of 50 

times for cross-validation to get average stable results  
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 The next chapter describes the experimental setup, the datasets, the two inductive learning algorithms 

used in our research, the tests used to affirm the statistical significance of the results obtained by wrapper 

approach and the results. 
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CHAPTER 4 

EXPERIMENTS 

4.1. Datasets 

There were seven real datasets used as a testbed in our research – 

• The Phoneme Dataset, 

• The Satimage Dataset, 

• The Mammography Dataset, 

• The Forest Cover Dataset, 

• The Pima Indian Diabetes Dataset, 

• The Oil Dataset and 

• The KDD-cup 99: Network Intrusion Detection Dataset (Two versions). 

A brief summary of the following datasets is presented in Table 4-1 and further details are given in later 

subsections. 

Table 4-1.  Summary of Datasets 

No. Dataset # of 
Examples 

# 
classes 

# of Majority 
class examples 

# of Minority  
class 

examples 

# of  
attributes 

# of 
continuous
attributes 

1 Phoneme 5404 2 3818 1586 5 5 

2 Satimage 6435 2 5809 626 36 36 

3 Mammography 11183 2 10923 260 6 6 

4 Forest cover 38501 2 35754 2747 54 54 

5 Pima Indian 768 2 500 268 8 8 

6 Oil 937 2 896 41 49 49 

Normal 35000 U2R 267 

Dos 25988 7 

Modified 
KDD-cup 99: 

Network 
Intrusion 
Detection 

69980 5 

Probe 4813 
R2L 3912 

41 34 
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4.2. Machine Learning Algorithms 

It is our hypothesis that, the under-sampling and SMOTE levels required to obtain, for a particular dataset, 

the best performance are not constant and change depending upon the machine learning algorithm used in 

building the classifier. So to evaluate this hypothesis we have used two different induction learning 

algorithms: C4.5 [42] and RIPPER [47]. The next two sub-sections discuss upon these two learning 

algorithms.  

4.2.1. C4.5 

The C4.5 [42] algorithm belongs to the family of decision tree induction learning algorithms, and is a much 

improved version of the ID3 [48] algorithm. In decision trees, the classification of a particular pattern starts 

at the root node, where a test on the values of a particular attribute of the example pattern is done. The node 

is split into branches depending on the different values (or sets of values) taken by the test attribute. Based 

on the value of the attribute, an appropriate branch to a subsequent or child node is taken. Next, the chosen 

test at the child node under consideration, which can be considered as the root of the following sub-tree, is 

performed and the test pattern is sent down the appropriate path. This procedure continues iteratively until a 

leaf node is reached, which has no further test. Each leaf node bears a classification label and a test pattern 

is assigned the classification of the leaf node reached. It is evident that each path from root to leaf is a 

conjunction of the attribute tests, and the tree is a disjunction of conjunctions of the attribute tests along all 

paths in the tree. Sometimes, decision tree learners over-fit the training data by unnecessarily splitting the 

leaf nodes of an ideal decision tree. To reduce the effect of over-fitting, the C4.5 algorithm has a provision 

for pruning the resulting decision tree using heuristics based on the statistical significance of splits where 

each sub-tree is recursively replaced with a following leaf node if the projected error rate for the leaf node 

is less than that for the sub-tree. A modified version of C4.5 release 8 called USFC4.5 from the University 

of South Florida was used with default parameters for all the experiments. USFC4.5 with default 

parameters settings produces identical output to C4.5 release 8. The added functionality in USFC4.5 was 

used to interface the learner with our wrapper under-sample SMOTE script. 
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4.2.2. RIPPER 

The RIPPER [47] algorithm is an induction learning technique belonging to a family of propositional rule 

learning systems. RIPPER which stands for ‘Repeated Incremental Pruning to Produce Error Reduction’ 

mainly consists of an improved version of  Incremental Reduced Error Pruning [49] (IREP) called IREP* 

[47] with some passes through the initial rules which do rule optimization. IREP* integrates reduced error 

pruning with a separate-and-conquer rule learning algorithm. The separate-and-conquer rule learning 

algorithm [50] builds rules in a greedy fashion, one rule at a time.  Then once a rule is found, all examples 

covered by that rule are removed. In order to build a rule, all uncovered examples are partitioned into a 

growing set (two-thirds of examples in this case) and pruning set, and a rule is built using a propositional 

version of FOIL [51] which tries to optimize for information gain. Then after growing a rule, it is 

immediately pruned using the pruning set. Adding rules to the rule-set is stopped when a rule is learned that 

has an error rate greater than 50%. IREP* incorporates a metric to guide rule pruning and an MDL-based 

heuristic [52] for determining how many rules should be learned. After learning a rule-set which covers all 

the data examples except the default class examples, n iterations of the optimization phase which mimic the 

effect of non-incremental reduced error pruning are done. The optimization phase consists of building two 

alternative rules for each rule in the rule-set: a replacement rule built using the growing and pruning set to 

reduce the error rate of the entire rule-set and a revision rule which is a revised version of the rule under 

consideration also optimized to reduce the error rate of the entire rule-set, and then selecting one of them 

using the MDL heuristic. Once the rule-set is modified by the optimization phase, IREP* is again executed 

to build more rules on the examples which are not covered by this optimized rule-set. It was found that 

RIPPER with two optimization passes, called RIPPER2, was extremely competitive with C4.5rules [42]. 

RIPPER2 is used in our experiments. All other parameters are left at their default values. 

4.3. Consistency of Training, Testing and Validations Sets 

Four experimental runs were done on each of the seven datasets using USFC4.5 and RIPPER as induction 

learning algorithms and the wrapper script was executed to search for under-sampling and SMOTE 

percentages together and also the SMOTE percentage with no under-sampling. As described earlier in the 
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Cross-Validation subsection, the wrapper script was executed 10 times on 10-fold cross-validation sets, 

which again repeatedly does a five-fold cross-validation of training data to find under-sampling and 

SMOTE percentages. In order to eliminate the effects that may arise from the creation of random training, 

testing and validation sets across the four experimental runs, the same seed was used for initialization of the 

random number generator so that the data samples selected across the four experimental runs are identical. 

Likewise, the order in which the data samples were presented to the learning algorithms was also 

maintained so as to eliminate its effects on order sensitive learners like RIPPPER which internally 

partitions the training data into a growing and pruning set. For example, if RIPPER picks examples 1, 3, 

9,….etc. as a growing set, then if the data samples are provided in a different order, RIPPER still picks 

examples 1, 3, 9,….etc. thus changing the growing set and resulting in a different learned rule set. This is 

not desired and so it was necessary to maintain the order of examples presented to the RIPPER learner. 

4.4. Tests for Statistical Significance 

Tests for Statistical Significance are very important as they provide information about whether observed 

differences in results are really meaningful or simply a chance happening. It is not possible to use these 

tests on individual results, but when groups of results are available, we can use statistical tests to affirm 

which results are statistically better than others. So to establish, that the wrapper approach is successful in 

selecting the under-sampling level for majority classes and the SMOTE level for minority classes, we did a 

10-fold cross-validation on all datasets and compare wrapper results for statistical significance over 

baseline results using three performance metrics – minority class TP-rate and F-value and majority class 

F-value. 

The wrapper results were obtained when the classifier was built on the data whose baseline distribution 

had been changed using under-sampling and SMOTE. This change in distribution was part of the 

experiment, and the changes in the wrapper results were due to the altered distribution of training data and 

should not be attributed to random effects. With this we can say that the baseline and wrapper results 

obtained on a specific cross-validation run were dependant or paired. 

The t-test which is the most commonly used method to evaluate the differences in means between two 

groups has two variants: the unpaired t-test for independent groups and the paired t-test for paired groups of 
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data. In our case, since the groups of 10 baseline and wrapper results that are to be compared are based on 

the same base datasets which are tested twice (before and after under-sampling and SMOTE), a 

considerable part of the within-group variation in both groups of results can be attributed to the initial 

individual differences between the 10 fold datasets. The paired t-test uses the information regarding the 

pairing of the data from two groups to identify and exclude an important source of within-group variation 

(or error) and effectively increases the test’s sensitivity and produces more realistic results when compared 

with the un-paired t-test. The t-statistic is basically the ratio of mean difference between two paired groups 

and the standard deviation of differences (standard error) between paired values of two groups, and is 

calculated as follows: 

n
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Where xi is from group A, yi is from group B and n is the number of paired observations. 

Thus the paired t-test compares the magnitude of the difference between paired group results to the 

variation among the differences and if the mean difference is large compared with standard error, then the 

results are statistically different. One underlying assumption when using the t-test is that variables should 

be normally distributed within each group. If we assume that the datasets we are using to build the 

classifiers have normally distributed features which is generally true, then we can extend this assumption to 

the cross-validation sample datasets drawn from the original dataset. Continuing, we can also assume that 

the baseline and wrapper results obtained from the n cross-validation folds are normally distributed. Hence 

we can safely use the paired t-test for comparing baseline and wrapper results. Also in [53]  it was stated 

that the t-test still works well even if the assumption of normality is slightly violated. Since the direction of 

increase or decrease in the performance measures is known, we use a one-tailed analysis with tcritical = 1.833 

at level of significance α = 0.05 and degree of freedom df = 9 (one less than the number of paired 

observations).  
 26
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Though statistical tests are important in assessing the results, one should still distinguish between 

statistical and practical tests as suggested by Keen [54]. Statistical tests are only concerned about 

establishing with some degree of confidence that one group of results are better or worse than the other. 

Whereas practical tests are concerned with the magnitude of the difference noticeable by the user between 

the two sets of results and are also important. They complement the statistical tests. So along with the t-

statistic we also provide the percentage increase observed in the TP-rate and F-value on the minority class 

and percentage decrease observed in the F-value on the majority class. 

4.5. Results 

4.5.1. Phoneme Dataset 

The Phoneme dataset was obtained from the ELENA project [44]. The purpose of the dataset is to 

distinguish between nasal (class 0) and oral sounds (class 1). There are five features which are all numeric. 

The classes are skewed with 29.35% of the total examples belonging to the minority class. There are 3,818 

examples in class 0 and 1,586 examples in class 1. The results obtained from four experimental runs: C4.5 

with ‘SMOTE only’ and ‘under-sampling with SMOTE’ and RIPPER with ‘SMOTE only’ and ‘under-

sampling with SMOTE’ are shown in Table 4-2.  

As we expected to get an increase in the TP-rate and the F-value for the minority class the table lists 

the ‘percentage increase’ from the baseline TP-rate and F-value respectively for the minority class. 

Whereas for the majority class, the ‘percentage decrease’ from the baseline F-value is calculated as under-

sampling the majority class and SMOTEing minority class reduces the bias of the classifier towards the 

majority class thus reducing accuracy over it. The baseline results refer to the results obtained on the 

original dataset which is not under-sampled and SMOTEd. The symbol ‘√ ’ indicates that wrapper results 

are statistically significantly better than baseline results, ‘×’ indicates that wrapper results are statistically 

significantly worse than baseline results and ‘-’ indicates that there is no statistical difference between the 

two results. The negative sign before the t-statistic indicates that the wrapper results are better than the 

baseline results. If the absolute t-statistic value is greater than tcritical = 1.833, we can say at the 95% 

confidence level that the two results groups are statistically significantly different. 
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Table 4-2.  Results for Phoneme Dataset 

C4.5 RIPPER 
Algorithm SMOTE 

only 
Under-sampling 

& SMOTE 
SMOTE 

only 
Under-sampling 

& SMOTE 
Average 
SMOTE 
percentage 

160% 150% 200% 150%  

Average 
Under-sampling 
percentage 

100% 89% 100% 90% 

Baseline 0.783 0.783 0.725 0.725 
Wrapper 0.866 0.875 0.879 0.876 
% increase 9.56% 10.51% 17.47% 17.21% 
t-stat -8.333 -8.567 -8.375 -11.145 

Average 
Minority 
class 
TP-rate  

Significance √ √ √ √ 
Baseline 0.773 0.773 0.748 0.748 
Wrapper 0.787 0.780 0.761 0.758 
% increase 1.77% 0.86% 1.62% 1.33% 
t-stat -2.828 -0.949 -2.057 -2.229 

Average 
Minority 
class 
F-value 

significance √ - √ √ 
Baseline 0.904 0.904 0.9 0.9 
Wrapper 0.898 0.891 0.877 0.876 
% decrease 0.65% 1.38% 2.59% 2.68% 
t-stat 3.218 3.971 3.997 5.752 

Average 
Majority 
class 
F-value 

significance × × × × 
 

Detailed Results for each fold are provided in the charts in Figure 4-1 to Figure 4-4, where the x-axis is 

labeled using the percentage of SMOTE and under-sampling performed to obtain the results and the fold 

number. As indicated earlier, due to the inherent randomness in under-sampling and SMOTEing, to get fair 

performance measures over the test set, the classifiers were built and evaluated five times using wrapper 

selected under-sampling and SMOTE percentages. The standard deviation from the average TP-rates and 

F-values is shown in the charts using standard deviation bars for wrapper results. The baseline results are 

always constant and do not have standard deviation bars. 
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Figure 4-1. True Positive Rate for Phoneme 
Data Using C4.5 – SMOTE with 

Under-sampling 

 
Figure 4-2. True Positive Rate for Phoneme 

Data Using C4.5 – SMOTE Only 
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Figure 4-3. F-value for Phoneme Data Using 
C4.5 – SMOTE with Under-sampling 

 
Figure 4-4. F-value for Phoneme Data Using 

C4.5 – SMOTE Only 

 
From Figure 4-1 and Figure 4-2, it can be seen that the wrapper approach for C4.5 was able to 

significantly improve TP-rates for the minority class (9.56% and 10.51% increase on average for ‘SMOTE 

only’ and ‘under-sampling & SMOTE’ respectively) on all 10 test sets, with the wrapper TP-rate using 

‘under-sampling & SMOTE’ better than wrapper TP-rate using ‘SMOTE only’. In the case of the ‘SMOTE 

only’ scenario the wrapper F-values for the minority class were statistically better than the baseline 

F-values as seen in Table 4-2. Also the F-values on the majority class were statistically worse than the 

baseline F-values, but the amount of decrease was very small (0.65% and 1.38% on average for ‘SMOTE 

only’ and ‘under-sampling & SMOTE’ respectively).  
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Figure 4-5. True Positive Rate for Phoneme 
Data Using RIPPER – SMOTE with 

Under-sampling 

 
Figure 4-6. True Positive Rate for Phoneme 

Data Using RIPPER – SMOTE Only 
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Figure 4-7. F-value for Phoneme Data Using 
RIPPER – SMOTE with Under-sampling 

 

 
Figure 4-8. F-value for Phoneme Data Using 

RIPPER – SMOTE Only 

 
From Figure 4-5 and Figure 4-6, it can be seen that the wrapper approach for RIPPER was able to 

significantly improve TP-rates (17.47% and 17.21% increase on average for ‘SMOTE only’ and ‘under-

sampling & SMOTE’ respectively) on all 10 test sets in both scenarios with average TP-rate values very 

close to those obtained by C4.5. The wrapper F-values (1.62% and 1.33% increase on average for ‘SMOTE 

only’ and ‘under-sampling & SMOTE’ respectively, Figure 4-7 and Figure 4-8) for the minority class were 

statistically better than the baseline F-values. The wrapper F-values on the majority class were statistically 

worse than the baseline F-values as seen in Table 4-2.  
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4.5.2. Satimage Dataset 

Originally, the Satimage Dataset [45] contained 6435 examples with 36 numeric attributes (4 spectral band 

values for each of nine pixels in a neighborhood) and six classes. But we chose the smallest class as the 

minority class and relabeled the rest of the classes as one majority class as was done in [7] [43]. This 

manipulation gave us a skewed two-class dataset, with 5809 samples in the majority class and 626 samples 

in the minority class. The results are shown in Table 4-3 below. 

Table 4-3.  Results for Satimage Dataset 

C4.5 RIPPER 
Algorithm SMOTE 

only 
Under-sampling 

& SMOTE 
SMOTE 

only 
Under-sampling 

& SMOTE 
Average 
SMOTE 
percentage 

630% 620% 440% 570%  

Average 
Under-sampling 
percentage 

100% 93% 100% 87% 

Baseline 0.538 0.538 0.505 0.505 
Wrapper 0.641 0.656 0.667 0.675 
% increase 15.99% 17.86% 24.33% 25.25% 
t-stat -4.974 -5.389 -7.158 -6.791 

Average 
Minority 
class 
TP-rate  

significance √ √ √ √ 
Baseline 0.566 0.566 0.568 0.568 
Wrapper 0.569 0.566 0.596 0.586 
% increase 0.41% 0.01% 4.56% 3.07% 
t-stat -0.145 -0.003 -1.926 -1.126 

Average 
Minority 
class 
F-value 

significance - - √ - 
Baseline 0.956 0.956 0.96 0.96 
Wrapper 0.947 0.945 0.951 0.948 
% decrease 0.97% 1.15% 0.94% 1.23% 
t-stat 4.975 6.691 6.263 7.783 

Average 
Majority 
class 
F-value 

significance × × × × 
 

From Table 4-3, we can see that in all four experimental runs, the wrapper algorithm was able to 

significantly improve TP-rates for the minority class at the expense of a statistically significant reduction in 

F-values for the majority class. However, the amount of increase in the minority class TP rates was very 

large compared to the amount of reduction in the majority class F-values. 
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Figure 4-9. True Positive Rate for Satimage 
Data Using C4.5 – SMOTE with 

Under-sampling 

 
Figure 4-10. True Positive Rate for Satimage 

Data Using C4.5 – SMOTE Only 
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Figure 4-11. F-value for Satimage Data Using 
C4.5 – SMOTE with Under-sampling 

 

 
Figure 4-12. F-value for Satimage Data Using 

C4.5 – SMOTE Only 

 
From Figure 4-9 and Figure 4-10, it can be seen that the wrapper approach for C4.5 was mostly able to 

significantly improve TP-rates for the minority class on 10 test sets, with the average wrapper TP-rate 

increase using ‘under-sampling & SMOTE’ (17.86%) better than average wrapper TP-rate using ‘SMOTE 

only’ (15.99%). The wrapper F-values for the minority class were statistically significantly different than 

the baseline F-values. As seen in Figure 4-11 and Figure 4-12, the wrapper F-values on the majority class 

were statistically significantly worse than the baseline F-values, but the amount of reduction was very small 

(0.97% and 1.15% on average for ‘SMOTE only’ and ‘under-sampling & SMOTE’ respectively). 
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Figure 4-13. True Positive Rate for Satimage 
Data Using RIPPER – SMOTE with 

Under-sampling 

 
Figure 4-14. True Positive Rate for Satimage 

Data Using RIPPER – SMOTE Only 
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Figure 4-15. F-value for Satimage Data Using 
RIPPER – SMOTE with Under-sampling 

 

 
Figure 4-16. F-value for Satimage Data Using 

RIPPER – SMOTE Only 

 
From Figure 4-13 and Figure 4-14, it can be seen that the wrapper approach for RIPPER was able to 

significantly improve TP-rates for the minority class on almost all 10 test sets, with the average wrapper 

TP-rate increases (24.33% and 25.25% on average for ‘SMOTE only’ and ‘under-sampling & SMOTE’ 

respectively) much higher than those obtained using C4.5 (15.99% and 17.86% for ‘SMOTE only’ and 

‘under-sampling & SMOTE’ respectively). The wrapper F-values for the minority class were significantly 

improved for the ‘SMOTE only’ scenario but not for the ‘under-sampling & SMOTE’ scenario as seen in 

Table 4-3. The wrapper F-values for the majority class were statistically worse than the baseline F-values. 
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4.5.3. Mammography Dataset 

The Mammography Dataset which was used in [8] consists of 11,183 total samples with six numeric 

features and two classes representing calcification (cancerous) and non-calcification (non-cancerous). The 

minority class which represents calcification contained only 260 examples in the dataset i.e. only 2.32% of 

the total examples. The results obtained are tabulated below in Table 4-4. The negative sign before the 

number in the ‘% increase’ row indicates reduction in the value for that metric. 

Table 4-4.  Results for Mammography Dataset  

C4.5 RIPPER 
Algorithm SMOTE 

only 
Under-sampling 

& SMOTE 
SMOTE 

only 
Under-sampling 

& SMOTE 
Average 
SMOTE 
percentage 

210% 180% 300% 180%  

Average 
Under-sampling 
percentage 

100% 87% 100% 94% 

Baseline 0.546 0.546 0.577 0.577 
Wrapper 0.658 0.659 0.696 0.665 
% increase 16.96% 17.15% 17.13% 13.29% 
t-stat -4.7 -3.913 -4.276 -3.322 

Average 
Minority 
class 
TP-rate  

significance √ √ √ √ 
Baseline 0.644 0.644 0.652 0.652 
Wrapper 0.647 0.634 0.643 0.639 
% increase 0.49% -1.61% -1.38% -1.90% 
t-stat -0.128 0.398 0.484 0.727 

Average 
Minority 
class 
F-value 

significance - - - - 
Baseline 0.993 0.993 0.993 0.993 
Wrapper 0.992 0.991 0.991 0.991 
% decrease 0.16% 0.21% 0.21% 0.18% 
t-stat 3.678 3.923 5.674 4.224 

Average 
Majority 
class 
F-value 

significance × × × × 
 

It can be seen from Table 4-4, that for all four experimental runs, the wrapper algorithm was able to 

statistically significantly improve TP-rates for the minority class at the expense of a statistically significant 

reduction in F-values for the majority class. Also the amount of increase in the minority class TP rates was 

very large as compared to the amount of reduction in the majority class F-values as shown in the 

‘% increase’ line. 
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Figure 4-17. True Positive Rate for 
Mammography Data Using C4.5 – SMOTE 

with Under-sampling 

 
Figure 4-18. True Positive Rate for 

Mammography Data Using C4.5 – SMOTE 
Only 
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Figure 4-19. F-value for Mammography Data 
Using C4.5 – SMOTE with Under-sampling 

 

 
Figure 4-20. F-value for Mammography Data 

Using C4.5 – SMOTE Only 

 
From Figure 4-17 and Figure 4-18 it can be seen that the wrapper approach for C4.5 was able to 

improve TP-rates for the minority class on 9 of 10 test sets. There was no statistically significant 

improvement in wrapper F-values for the minority class. Again the wrapper F-values on the majority class 

were statistically significantly worse than the baseline F-values, but the amount of reduction was extremely 

small (0.16% and 0.21% on average for ‘SMOTE only’ and ‘under-sampling & SMOTE’ respectively).  

These results show that statistical significance in the case of majority class F-values is sometimes not very 

important because the amount of reduction is very small and is worth the loss. 
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Figure 4-21. True Positive Rate for 
Mammography Data Using RIPPER – 

SMOTE with Under-sampling 

 
Figure 4-22. True Positive Rate for 

Mammography Data Using RIPPER – 
SMOTE Only 
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Figure 4-23. F-value for Mammography Data 
Using RIPPER – SMOTE with Under-

sampling 

 
Figure 4-24. F-value for Mammography Data 

Using RIPPER – SMOTE Only 

 
For RIPPER, as shown in Figure 4-21 and Figure 4-22, the wrapper F-values for the minority and 

majority class were very similar to those obtained using C4.5. The average TP-rate obtained by wrapper 

using the ‘SMOTE only’ (0.696) was higher than the average TP-rate got using the ‘Under-sampling & 

SMOTE’ (0.665) but there was no statistical difference between the two groups of results (t-stat = 1.63). 

One can also note that RIPPER performed better than C4.5 on the minority class (0.577 against 0.546 for 

TP-rate and 0.652 against 0.644 for F-value) when the imbalance in the data was large as in case of 

Mammography dataset (order of imbalance is 1:42). Whereas in the case of Phoneme dataset (order of 

imbalance is 1:2.4) where the imbalance was not large, C4.5 seemed to perform much better than RIPPER. 
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4.5.4. Forest Cover Dataset 

Originally, the Forest Cover dataset [45] consisted of 581,012 examples with 54 numeric features related to 

cartographic variables and seven classes representing the type of the forest cover. For our study, the data 

samples from two classes were extracted while the rest were ignored as done in [7]. The two classes we 

considered are Ponderosa Pine with 35,754 samples and Cottonwood/Willow with 2,747 samples. The 

results obtained on this dataset are tabulated below in Table 4-5. 

Table 4-5.  Results for Forest Cover Dataset 

C4.5 RIPPER 
Algorithm SMOTE 

only 
Under-sampling 

& SMOTE 
SMOTE 

only 
Under-sampling 

& SMOTE 
Average 
SMOTE 
percentage 

600% 430% 560% 580%  

Average 
Under-sampling 
percentage 

100% 99% 100% 93% 

Baseline 0.873 0.873 0.834 0.834 
Wrapper 0.905 0.903 0.900 0.905 
% increase 3.59% 3.28% 7.34% 7.87% 
t-stat -4.889 -4.223 -7.544 -7.532 

Average 
Minority 
class 
TP-rate  

significance √ √ √ √ 
Baseline 0.887 0.887 0.852 0.852 
Wrapper 0.884 0.885 0.868 0.866 
% increase -0.35% -0.24% 1.88% 1.69% 
t-stat 0.771 0.549 -3.963 -3.178 

Average 
Minority 
class 
F-value 

significance - - √ √ 
Baseline 0.992 0.992 0.989 0.989 
Wrapper 0.991 0.991 0.989 0.989 
% decrease 0.06% 0.05% -0.06% -0.04% 
t-stat 2.225 1.884 -2.19 -1.087 

Average 
Majority 
class 
F-value 

significance × × √ - 
 

For the Forest cover dataset, the results for the minority class were as expected, with the wrapper 

TP-rate increasing with statistical significance. But the interesting thing about these results was that, the 

wrapper F-values obtained on the majority class using RIPPER in both scenarios had actually increased 

slightly instead of decreasing which was the general trend. For the ‘SMOTE only’ scenario using RIPPER, 

the wrapper F-values were better than baseline F-values with statistical significance. For C4.5,  the  drop  in  
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Figure 4-25. True Positive Rate for Forest 
cover Data Using C4.5 – SMOTE with 

Under-sampling 

 
Figure 4-26. True Positive Rate for Forest 

cover Data Using C4.5 – SMOTE Only 
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Figure 4-27. F-value for Forest cover Data 
Using C4.5 – SMOTE with Under-sampling 

 

 
Figure 4-28. F-value for Forest cover Data 

Using C4.5 – SMOTE Only 

 
the wrapper F-values over the majority class though statistically significant was extremely small. These are 

almost perfect results which one might always hope for, where the minority examples which were 

previously misclassified are correctly classified without increasing the number of majority class examples 

being classified as belonging to the minority class. The reason for these good results might be due to the 

similar distribution of the minority class examples in training and test data when cross-validation is 

performed. For example, the forest cover dataset which contains 2,747 total minority class examples, the 

training data will contain approximately 2,472 examples while test data will contain 275 examples.   

Whereas for other datasets like the Mammography and the oil dataset where the total number of minority 
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Figure 4-29. True Positive Rate for Forest 
cover Data Using RIPPER – SMOTE with 

Under-sampling 

 
Figure 4-30. True Positive Rate for Forest 
cover Data Using RIPPER – SMOTE Only 
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Figure 4-31. F-value for Forest cover Data 
Using RIPPER – SMOTE with Under-

sampling 

 

 
Figure 4-32. F-value for Forest cover Data 

Using RIPPER – SMOTE Only 

 

class examples is very small (260 and 41 respectively), the training and the test datasets will contain a 

meager amount of minority class examples which might have a dissimilar distribution which may be lead to 

reduced accuracy on test data. So, it could be a small dataset phenomenon. 

For RIPPER, from the Figure 4-29 and Figure 4-30 we can see that the wrapper approach was able to 

find under-sampling and SMOTE percentages which statistically significantly improve the TP-rates and F-

values on the minority class and also the F-values on the majority class for the ‘SMOTE only’ scenario, 

though only by a small amount. 
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4.5.5. Pima Indian Diabetes Dataset 

The Pima Indian Diabetes Dataset [45] was a result of survey examination done near Phoenix, Arizona, 

USA in accordance with World Health Organization criteria. It consists of 768 samples with 8 numeric 

variables and two classes. The aim of the dataset is to identify from the dependant variables whether a 

particular case is diabetic in nature. There are 268 cases which are diabetic which constitute the minority 

class while the remaining 500 cases belong to the non-diabetic majority class.  The results are shown in 

Table 4-6 below. 

Table 4-6.  Results for Pima Indian Diabetes Dataset 

C4.5 RIPPER 
Algorithm SMOTE 

only 
Under-sampling 

& SMOTE 
SMOTE 

only 
Under-sampling 

& SMOTE 
Average 
SMOTE 
percentage 

350% 320% 300% 330%  

Average 
Under-sampling 
percentage 

100% 89% 100% 89% 

Baseline 0.608 0.608 0.59 0.59 
Wrapper 0.764 0.798 0.800 0.829 
% increase 20.32% 23.77% 26.27% 28.81% 
t-stat -6.087 -5.756 -8.791 -8.734 

Average 
Minority 
class 
TP-rate  

significance √ √ √ √ 
Baseline 0.632 0.632 0.624 0.624 
Wrapper 0.635 0.643 0.643 0.650 
% increase 0.52% 1.72% 2.94% 3.94% 
t-stat -0.145 -0.459 -0.888 -1.264 

Average 
Minority 
class 
F-value 

significance - - - - 
Baseline 0.814 0.814 0.816 0.816 
Wrapper 0.732 0.724 0.720 0.717 
% decrease 10.06% 10.98% 11.75% 12.09% 
t-stat 5.054 5.324 4.861 12.409 

Average 
Majority 
class 
F-value 

significance × × × × 
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Figure 4-33. True Positive Rate for Pima Data 
Using C4.5 – SMOTE with Under-sampling 

 
Figure 4-34. True Positive Rate for Pima Data 

Using C4.5 – SMOTE Only 
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Figure 4-35. F-value for Pima Data Using 
C4.5 – SMOTE with Under-sampling 

 

 
Figure 4-36. F-value for Pima Data Using 

C4.5 – SMOTE Only 

 

 
For C.45, as can be seen from Table 4-6, Figure 4-35 and Figure 4-36, the wrapper TP-rates for both 

the scenarios were statistically significantly improved over the baseline TP-rates. There was a small 

increase in average F-value over the minority class but it isn’t statistically significant. The wrapper 

F-values on the majority class were statistically significantly reduced. The average wrapper TP-rate and 

F-value on the minority class for the ‘SMOTE only’ scenario were lower than those obtained by the 

‘Under-sampling & SMOTE’ scenario, but there was no statistically significant difference between the two 

results. 
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Figure 4-37. True Positive Rate for Pima Data 
Using RIPPER – SMOTE with 

Under-sampling 

 
Figure 4-38. True Positive Rate for Pima Data 

Using RIPPER – SMOTE Only 
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Figure 4-39. F-value for Pima Data Using 
RIPPER – SMOTE with Under-sampling 

 

 
Figure 4-40. F-value for Pima Data Using 

RIPPER – SMOTE Only 

 
From Table 4-6, Figure 4-37 and Figure 4-38, one can see that the wrapper TP-rates for both the 

scenarios using RIPPER were statistically significantly improved over the baseline TP-rates. There was no 

statistical significance to the improvement observed in wrapper F-value on minority class. The wrapper 

F-values on majority class were statistically significantly reduced when compared to baseline F-values. 

Also similar to results obtained using C4.5, the average wrapper TP-rate and F-value on the minority class 

for ‘SMOTE only’ scenario were lower than those obtained by ‘Under-sampling & SMOTE’ scenario, but 

again with no statistically significant difference between the two results. 
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4.5.6. Oil Dataset 

The Oil dataset was provided by Robert Holte and was previously used in their paper [9]. This dataset has 

41 oil slick samples and 896 non-oil slick samples. The results are shown in Table 4-7 below. 

 

Table 4-7.  Results for Oil Dataset 

C4.5 RIPPER 
Algorithm SMOTE 

only 
Under-sampling 

& SMOTE 
SMOTE 

only 
Under-sampling 

& SMOTE 
Average 
SMOTE 
percentage 

480% 370% 290% 340%  

Average 
Under-sampling 
percentage 

100% 89% 100% 93% 

Baseline 0.37 0.37 0.385 0.385 
Wrapper 0.487 0.520 0.555 0.529 
% increase 24.02% 28.85% 30.63% 27.22% 
t-stat -2.885 -2.739 -2.457 -1.787 

Average 
Minority 
class 
TP-rate  

significance √ √ √ - 
Baseline 0.408 0.408 0.435 0.435 
Wrapper 0.463 0.428 0.487 0.441 
% increase 11.70% 4.58% 10.70% 1.46% 
t-stat -1.577 -0.542 -0.742 -0.09 

Average 
Minority 
class 
F-value 

significance - - - - 
Baseline 0.976 0.976 0.979 0.979 
Wrapper 0.974 0.969 0.973 0.969 
% decrease 0.50% 0.70% 0.63% 1.05% 
t-stat 0.816 2.897 2.28 3.156 

Average 
Majority 
class 
F-value 

significance - × × × 
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Figure 4-41. True Positive Rate for Oil Data 
Using C4.5 – SMOTE with Under-sampling 

 
Figure 4-42. True Positive Rate for Oil Data 

Using C4.5 – SMOTE Only 
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Figure 4-43. F-value for Oil Data Using C4.5 – 
SMOTE with Under-sampling 

 

 
Figure 4-44. F-value for Oil Data Using C4.5 – 

SMOTE Only 

 
From the Figure 4-41 to Figure 4-44, one can see there was lot of variation in the baseline and wrapper 

TP-rates and F-values across the 10 test folds. This might be due to poor representation of the minority 

class in the training data during 10 fold cross-validation where the training data containing approximately 

37 examples might not be able to properly represent the test data containing approximately 4 examples. 

Still the wrapper TP-rates on the minority class were statistically better than baseline TP-rates. There was 

no statistical difference between wrapper and baseline F-values on the minority class. One can note that the 

average wrapper F-values on the minority and majority classes for the ‘SMOTE only’ scenario were better 

than those obtained by the ‘Under-sampling & SMOTE’ scenario. 
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Figure 4-45. True Positive Rate for Oil Data 
Using RIPPER – SMOTE with 

Under-sampling 

 
Figure 4-46. True Positive Rate for Oil Data 

Using RIPPER – SMOTE Only 
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Figure 4-47. F-value for Oil Data Using 
RIPPER – SMOTE with Under-sampling 

 

 
Figure 4-48. F-value for Oil Data Using 

RIPPER – SMOTE Only 

 
The variation in results across the folds was even higher for RIPPER when compared with C.45. From 

Figure 4-45 to Figure 4-48, one can see that in fold 8, the baseline TP-rate and F-value on the minority 

class for the test data was zero. This might have been the result of RIPPER internally splitting the training 

data into growing and pruning sets, thus further reducing the number of minority class examples used to 

actually build the rules. 

Due to the high variation in TP-rate across the 10 folds, in the ‘Under-sampling & SMOTE’ scenario 

where the average TP-rate on the minority class increases from 0.385 to 0.529, no statistical significance 

was detected in the difference between the wrapper and baseline TP-rates by the paired t-test. 
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4.5.7. KDD-cup 99: Network Intrusion Detection Dataset 

The Network Intrusion Detection dataset was used in the KDD cup 99 competition [55] which was a 

modified version of the DARPA 1998 Intrusion Detection Evaluation Data [56] originally created by the 

MIT Lincoln Lab [57]. The task for the competition was to build a network intrusion detector using the data 

and identify the ‘bad’ connections or the attacks. The Dataset has 41 total features with 7 of its features 

nominal and the others continuous valued. The original training data contained 4,898,430 network 

connections while the test data contained 311,029 network connections. The original class labels are 

collapsed into five classes with the ‘normal’ class consisting of normal network connections while the other 

classes consisting of network attacks. Table 4-8 gives the mapping of the attacks to the class categories and 

the number of (total and distinct) examples in the training and test datasets. The four classes covering the 

four categories of attacks are –  

• DOS (Denial of Service): ex. Ping-of-death, teardrop, smurf, etc. 

• R2L (Remote to Local): unauthorized access from a remote machine, ex. Guessing password, etc. 

• U2R (User to Remote): unauthorized access to local super-user privileges by local unprivileged 

user, ex. Buffer overflow attacks, etc. 

• Probe: surveillance and probing, ex. Port-scan, ping-sweep, etc. 

The test dataset has many novel attacks for ‘u2r’ (83% new attacks) and ‘r2l’ (63% new attacks) 

categories.  Due to this totally different distribution of original training and test sets, we use two version of 

this dataset: one is a modified version of the dataset previously used by Chawla et al. [8] and the second is 

the original version used in the KDD cup competition. The modified dataset was created by merging the 

original training and testing sets and sampling 69,980 total examples. Under-sampling was performed only 

on the majority class (normal, dos and probe) examples with all the minority class (u2r and r2l) examples 

retained. Then this sampled dataset was randomly divided into two equal sets to create the new modified 

training and modified testing sets so that they had similar distributions. Since the datasets are big and 

separate testing sets are available, the evaluation of the wrapper Under-sample SMOTE algorithm is done 

using a testing set and not by using the 10-fold cross validation.  Since we do have 10 paired results, the 

paired t-test is not performed for this dataset. 
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Table 4-8.  Class Categories and Number of Examples in Original Training and Test Sets 

  Training Data Testing Data 

Class Class 
Category 

No. 
Examples 

No. Distinct 
Examples 

No. 
Examples 

No. Distinct 
Examples 

smurf dos 2,807,886 3,007 164,091 936 
neptune dos 1,072,017 242,149 58,001 20,332 
normal normal 972,780 812,813 60,593 47,913 
satan probe 15,892 5,019 1,633 860 
ipsweep probe 12,481 3,723 306 155 
portsweep probe 10,413 3,564 354 174 
nmap probe 2,316 1,554 84 80 
back dos 2,203 968 1,098 386 
warezclient r2l 1,020 893   
teardrop dos 979 918 12 12 
pod dos 264 206 87 45 
guess_passwd r2l 53 53 4,367 1,302 
buffer_overflow u2r 30 30 22 22 
land dos 21 19 9 9 
warezmaster r2l 20 20 1,602 1,002 
imap r2l 12 12 1 1 
rootkit u2r 10 10 13 13 
loadmodule u2r 9 9 2 2 
ftp_write r2l 8 8 3 3 
multihop r2l 7 7 18 18 
phf r2l 4 4 2 2 
perl u2r 3 3 2 2 
spy r2l 2 2   
apache2 dos   794 794 
mailbomb dos   5,000 308 
processtable dos   759 744 
udpstorm dos   2 2 
mscan probe   1,053 1,049 
saint probe   736 364 
named r2l   17 17 
sendmail r2l   17 15 
snmpgetattack r2l   7,741 179 
snmpguess r2l   2,406 359 
worm r2l   2 2 
xlock r2l   9 9 
xsnoop r2l   4 4 
httptunnel u2r   158 145 
ps u2r   16 16 
sqlattack u2r   2 2 
xterm u2r   13 13 
total  4,898,430 1,074,991 311,029 77,291 
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Table 4-9.  Modified KDD-cup 99 Intrusion Detection Test Dataset Summary 

Class No. of 
Examples 

Percentage of 
Examples 

u2r 136 0.4% 
r2l 1982 5.7% 
dos  13027 37.2% 

probe  2445 7.0% 
normal 17400 49.7% 

 

Table 4-10.  Results for Modified KDD-cup 99 Intrusion Detection Dataset Using C4.5 

SMOTE only  Under-sampling & SMOTE 
 Class/ 
SMOTE  
or Under- 
sample % 

Metric  baseline wrapper % increase

 

 Class/ 
SMOTE  
or Under-
sample %

Metric baseline wrapper % increase

u2r TP-rate 0.794 0.837 5.10%  u2r TP-rate 0.794 0.832 4.59% 
200% F-value 0.818 0.847 3.44%  0% F-value 0.818 0.829 1.27% 
r2l TP-rate 0.968 0.973 0.53%  r2l TP-rate 0.968 0.973 0.45% 
800% F-value 0.964 0.958 -0.62%  500% F-value 0.964 0.958 -0.60% 
dos TP-rate 0.998 0.997 -0.12%  dos TP-rate 0.998 0.997 -0.13% 
100% F-value 0.998 0.997 -0.07%  100% F-value 0.998 0.997 -0.08% 
probe TP-rate 0.984 0.994 0.99%  probe TP-rate 0.983 0.994 1.08% 
100% F-value 0.983 0.984 0.12%  100% F-value 0.983 0.984 0.05% 
normal TP-rate 0.993 0.992 -0.14%  normal TP-rate 0.993 0.992 -0.16% 
100% F-value 0.994 0.993 -0.08%  90% F-value 0.994 0.993 -0.10% 
 

Table 4-11.  Results for Modified KDD-cup 99 Intrusion Detection Dataset Using RIPPER 

SMOTE only  Under-sampling & SMOTE 
 Class/ 
SMOTE  
or Under- 
sample % 

Metric baseline wrapper % increase  

 Class/ 
SMOTE  
or Under-
sample %

Metric baseline wrapper % increase

u2r TP-rate 0.882 0.882 0.00%  u2r TP-rate 0.882 0.862 -2.39% 
400% F-value 0.873 0.830 -5.09%  200% F-value 0.873 0.855 -2.09% 
r2l TP-rate 0.967 0.968 0.18%  r2l TP-rate 0.967 0.97 0.38% 
100% F-value 0.963 0.965 0.15%  100% F-value 0.963 0.961 -0.21% 
dos TP-rate 0.998 0.998 -0.02%  dos TP-rate 0.998 0.998 0.00% 
100% F-value 0.998 0.998 0.00%  90% F-value 0.998 0.998 -0.03% 
probe TP-rate 0.993 0.986 -0.68%  probe TP-rate 0.985 0.994 0.89% 
100% F-value 0.984 0.981 -0.30%  100% F-value 0.984 0.983 -0.12% 
normal TP-rate 0.992 0.992 0.01%  normal TP-rate 0.992 0.992 -0.04% 
100% F-value 0.994 0.994 -0.01%  100% F-value 0.994 0.993 -0.05% 
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As indicated earlier in the wrapper Under-sample SMOTE algorithm, the greedy search for the under-

sampling begins with no under-sampling for all the majority classes, then only the ‘normal’ class in under-

sampled at 90%. If results after under-sampling do not satisfy the stopping conditions, then the ‘dos’ along 

with ‘normal’ class are under-sampled at 90% and the search continues. If for any of the majority classes 

the stopping condition is met (i.e. either the average F-value on the minority classes is reduced or the 

average F-value on the majority classes is reduced by 5%), the under-sampling for that majority class is 

reset to the previous under-sampling value and the search for under-sampling for any other majority classes 

which have not met the stopping conditions continues. A similar search for SMOTE percentages for the 

minority classes which also includes a look ahead is performed. Table 4-9 gives a summary of the modified 

KDD cup 99 Intrusion Detection test dataset. Table 4-10 and Table 4-11 show the results obtained on all 

minority and majority classes using the C4.5 and RIPPER learning algorithms. In the tables, below the 

name of each class, SMOTE percentage or under-sampling percentage for the minority class (u2r and r2l) 

or majority class (normal, dos and probe) selected by the wrapper algorithm are shown. 

From Table 4-10, one can see when using the C4.5 learning algorithm, the wrapper TP-rates and 

F-values on the ‘u2r’ minority class, which was just 0.4% of the total test data, improved over the baseline 

results for both the ‘SMOTE only’ and ‘Under-sampling & SMOTE’ scenario. For the ‘r2l’ minority class, 

which was quite large compared to ‘u2r’ class (5.7% of total test data), the TP-rate increased while the 

F-value decreased in both the scenarios. It’s interesting to see that for the ‘probe’ majority class which 

accounted for 37.2% of the test data, the TP-rate went up by around 1% in both scenarios. The TP-rates and 

the F-values for the ‘dos’ and ‘normal’ class went down by small amounts. Another interesting thing about 

the results is that, though ‘u2r’ was a very small class, its SMOTE percentage was much less than the ‘r2l’ 

class’s SMOTE percentage. 

For the RIPPER learning algorithm, the wrapper TP-rates and F-values for the ‘u2r’ class reduced 

instead of increasing. One can see in Table 4-11, that the baseline TP-rates and F-values for the ‘u2r’ 

minority class were very high when compared to C4.5 baseline as well as wrapper results.  RIPPER which 

starts by building the rules for the smallest class first seemed to over-fit the training data when the ‘u2r’ 

class was SMOTEd. Also in the ‘SMOTE only’ scenario where the TP-rate (recall) for ‘u2r’ remained 

constant, the F-value went down by 5.09% due to reduction in precision over the test data which shows that 
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more examples from other classes were classified as belonging to ‘u2r’ class. The TP-rates and F-values 

obtained on other classes were similar to those obtained using C4.5.  

For the evaluation on original version of the dataset, we kept the testing data untouched. Building a 

model on the original training data is very time consuming as it contains nearly 5 million records. So as 

done by many other researchers [58], we kept all the distinct examples for the category classes of ‘u2r’, 

‘r2l’, ‘probe’, ‘dos’ and ‘normal’. For the ‘neptune’ (dos) and ‘normal’ classes, there were still a huge 

number of distinct class examples (242,149 and 812,813 respectively). Many previous research studies [58] 

had done random under-sampling of the distinct ‘normal’ and ‘dos’ (neptune) class examples to further 

reduce the size of the training data. This strategy must have removed some of the important examples 

which might have occurred more than once in the original training data making the built classifier weaker. 

What we did was associate a count with each distinct record which counts the number of its occurrences in 

the original training data. Then by using the simple logic that ‘a normal connection occurring only once in 

the dataset seems to be abnormal’ we further under-sampled the ‘normal’ class to 34,397 examples which 

effectively represent 194,364 normal examples. Similarly, the ‘neptune’ class was further under-sampled 

by removing 155,549 examples which occurred only once with the assumption that some of them may be 

mislabeled, thus effectively representing 916,468 of 1,072,017 total ‘neptune’ examples. The details of the 

two versions of training datasets is shown are Table 4-12. 

Table 4-12.  Details of Two Versions of Original Training Data 

Original Training 
Data 

Training Data 1 - 
under-sampled 
normal class 

Training Data 2- 
under-sampled 

normal and Neptune Datasets 
No. 

Examples 
Ratio to 
Normal 

No. 
Examples 

Ratio to 
Normal 

No. 
Examples 

Ratio to 
Normal 

normal 972,780 100.00% 34,397 100.00% 34,397 100.00% 
probe 41,102 4.23% 13,860 40.29% 13,860 40.29% 
dos 3,883,370 399.20% 247,267 718.86% 91,718 266.65% 
r2l 1,126 0.12% 999 2.90% 999 2.90% 
u2l 52 0.01% 52 0.15% 52 0.15% 
Total 4,898,430 296,575 141,026 
Effective 4,898,430 4,120,014 3,964,465 

 

The KDD-cup competition used a cost matrix for evaluating the results on the testing set obtained by 

its participants, which is given in the Table 4-13. 
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Table 4-13. Cost Matrix Used for Scoring Entries in KDD Cup 99 Competition 

Actual\predicted dos u2r r2l probe normal 
dos 0 2 2 1 2 
u2r 2 0 2 2 3 
r2l 2 2 0 2 4 
probe 2 2 2 0 1 
normal 2 2 2 1 0 

 

Since a form of under-sampling was already performed, we ran our wrapper Under-sample SMOTE 

algorithm using RIPPER and C4.5 to search for SMOTE percentage only for the minority classes ‘u2r’ and 

‘r2l’ on the two variants of the datasets – Training Data 1 for which only the ‘normal’ class was under-

sampled and Training Data 2 for which the ‘normal’ and ‘neptune’ class were under-sampled.  Table 4-14 

shows the selected SMOTE percentages for the minority classes. 

Table 4-14. SMOTE Percentages Selected by Under-sample SMOTE Algorithm 

Training Data 1 - 
under-sampled 
normal class 

Training Data 2- 
under-sampled 

normal and Neptune 
minority 
classes 

  C4.5 RIPPER C4.5 RIPPER 
u2r 200% 100% 200% 100% 
r2l 0% 0% 300% 0% 

 

Table 4-15. Comparison of Results Obtained on Original KDD Cup 99 Test Data 

 dos u2r r2l probe normal 
Cost per 

test 
example 

Winning Strategy [58] 97.10% 13.20% 8.40% 83.30% 99.50% 0.2331 
Decision Tree[59] 96.57% 13.60% 0.45% 77.92% 99.43% 0.2371 
Naïve Bayes [59] 96.65% 10.96% 8.66% 88.33% 97.68% 0.2485 
Multi-classifier [60] 97.30% 29.80% 9.60% 88.70% - 0.2285 
Using C4.5 on Training Data 
1 u2r (200) - r2l (0) 97.08% 14.47% 1.21% 93.52% 97.87% 0.2478 

Using RIPPER on Training 
Data 1 u2r (100) - r2l (0) 97.45% 22.37% 6.96% 81.64% 96.18% 0.2444 

Using C4.5 on Training Data 
2 u2r (200) - r2l (300) 99.41% 14.47% 7.39% 93.61% 97.34% 0.2051 

Using RIPPER on Training 
Data 2 u2r (100) - r2l (0) 97.33% 19.74% 13.73% 91.98% 95.62% 0.2049 

 

For comparing the results, we use the original cost matrix to calculate the average cost per test 

example and the percentage correct examples for each class. Table 4-15 shows the comparison of the 
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results obtained by classifiers built using wrapper selected SMOTE percentages for ‘u2r’ and ‘r2l’ classes 

with the KDD cup 99 winner [58] and two other recent models [59] [60]. The dash symbol in the cell for 

Multi-classifier ‘normal’ class indicates a missing result. In [59] the author tried to show that a simple 

Naïve Bayes classifier was able to get very competitive results when compared to the winning KDD cup 

entry and showed an increase in accuracy over ‘r2l’ and ‘probe’ class. The average cost per test example 

was not provided by [59] for their two classifiers, so we calculated them from the confusion matrix they 

had provided. The values indicate that both the classifiers were actually weaker than the winning entry. In 

[60] a multi-classifier model was built using a Multi-Layered Perceptron for ‘probe’ class, K-means 

clustering for ‘dos’ and ‘u2r’ class and a Gaussian classifier for ‘r2l’ class. They were able to reduce the 

average cost per test example when compared to winning strategy and got the best accuracy on the ‘u2r’ 

class of 29.8%. Our two classifiers built on Training Data 1 i.e. with only the ‘normal’ class under-sampled 

and wrapper selected SMOTE for minority classes were worse than the winning strategy. The number of 

‘normal’ examples were about 1/7th of the number of ‘dos’ examples which might be the reason for low 

accuracy. The two classifiers (C4.5 and RIPPER) built on Training Data 2 which was created by under-

sampling both the ‘normal’ and ‘neptune’ class where the ratio of ‘dos’ to ‘normal’ was more similar to 

original training data and SMOTEd at wrapper selected SMOTE percentages for minority classes were able 

to significant reduce the average cost per test example.  

The same technique which was used in [58] was used to establish statistical significance for our 

results.  The average cost per test example for our two classifiers (C4.5 and RIPPER) was 0.2051 and 

0.2049 and the standard deviation was 0.8632 and 0.8175 respectively. The test dataset contains total 

311,029 examples, but not all them were independent.  An upper bound on the number of independent test 

examples is the number of distinct test examples, which is 77,291.  So the standard error of our two models 

is at least 0. 8632/sqrt(77291) = 0.0031 and  0. 8175/sqrt(77291) = 0. 0029. Using two standard errors as 

threshold for statistical significance [58], both classifiers built on Training Data 2 with SMOTE were 

statistically significantly better than all other models. Also our models were able to get the best accuracies 

on ‘dos’, ‘probe’ and ‘r2l’ class so far. Thus these results on the original KDD-cup data show that clever 

under-sampling and SMOTE can be very useful in boosting accuracies over minority classes. 
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4.6. Summary 

The results obtained on the various datasets are summarized in Table 4-16, which shows when statistical 

significance between the baseline and wrapper TP-rates for the minority class was observed. The symbol 

‘√ ’ indicates that wrapper TP-rates are statistically significantly better than baseline TP-rates whereas ‘-’ 

indicates that there is no statistically significant difference between the two result groups. The table shows 

that the wrapper approach was able to statistically significantly improve the TP-rate of the minority class in 

almost all cases except for the oil dataset using RIPPER for the ‘Under-sampling & SMOTE’ scenario 

where the average wrapper TP-rate was better than the average baseline TP-rate but did not had any 

statistical significance.  The F-values on minority classes were improved by a small amount in many cases 

but statistical significance was only occasionally observed. 

 

Table 4-16. Significance of Improvement in TP-rate Over Minority Class 

C4.5 RIPPER 
Dataset % of Minority 

Class Data SMOTE 
only 

Under-sampling 
& SMOTE 

SMOTE 
only 

Under-sampling 
& SMOTE 

Phoneme 29.35% √ √ √ √ 
Satimage 9.73% √ √ √ √ 
Mammography 2.32% √ √ √ √ 
Forest cover 7.13% √ √ √ √ 
Pima Indian 34.90% √ √ √ √ 
Oil 4.38% √ √ √ - 

 

 
Table 4-17. Statistical Significance Between ‘Smote Only’ & ‘Under-sampling & SMOTE’ 

 C4.5 - ‘SMOTE only’ Vs. 
‘Under-sampling  &  SMOTE’ 

RIPPER - ‘SMOTE only’ Vs. 
‘Under-sampling  &  SMOTE’ 

 

Average 
Minority 

class 
TP-rate 

Average 
Minority 

class 
F-value 

Average 
Majority 

class 
F-value 

Average 
Minority 

class 
TP-rate 

Average 
Minority 

class 
F-value 

Average 
Majority 

class 
F-value 

Phoneme -0.009(-) 0.007(-) 0.007(√ ) 0.003(-) 0.003(-) 0.001(-) 
Satimage -0.015(-) 0.003(-) 0.002(-) -0.008(-) 0.010(√ ) 0.003(√ ) 

Mammography -0.001(-) 0.013(-) 0.001(-) 0.031(-) 0.004(-) 0.000(-) 
Forest cover 0.002(-) -0.001(-) 0.000(-) -0.005(-) 0.002(-) 0.000(-) 
Pima Indian -0.034(-) -0.008(-) 0.008(-) -0.029(-) -0.007(-) 0.003(-) 

Oil -0.033(-) 0.035(-) 0.005(√ ) 0.026(-) 0.046(-) 0.004(-) 
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Table 4-17 shows the difference between the absolute values of the wrapper performance metrics 

obtained by the ‘SMOTE only’ and ‘Under-sampling & SMOTE’ scenarios for individual inductive 

learning algorithms. A positive difference implies that the ‘SMOTE only’ approach was better than the 

‘Under-sampling & SMOTE’ approach. The round brackets include a symbol which tells whether the 

difference had any statistical significance (‘√ ’ means that wrapper results are statistically significantly 

better than baseline results whereas ‘-’ means that there is no statistically significant difference between the 

two result groups). One can see that in most of the cases there was no statistical difference between the 

wrapper results from the ‘Smote Only’ and ‘Under-sampling & SMOTE’ scenarios. When using the C4.5 

learning algorithm, the wrapper F-value over the majority class was statistically better for the Phoneme 

dataset (though the difference was extremely small: 0.007) and the Oil dataset (the difference was 

extremely small: 0.005) when under-sampling of the majority class was not performed.  Also in case of 

RIPPER, the wrapper F-value on the minority and majority class for the ‘SMOTE only’ scenario were 

statistically better than those obtained by ‘Under-sampling & SMOTE’ scenario on the Satimage dataset. 

The ‘Under-sampling & SMOTE’ approach seems to get a better TP-rate on the minority class than 

‘SMOTE only’ while ‘SMOTE only’ seems to get better F-values on both the minority and majority 

classes. From this we can say that there was no clear benefit to under-sampling the majority class other than 

it helped reduce the learning time by reducing the dataset size. 

Table 4-18 shows which of the two machine learning algorithms – C4.5 or RIPPER – got the best 

baseline and wrapper results for the two ‘SMOTE only’ and ‘Under-sampling & SMOTE’ approaches. The 

appropriate cell contains the name of the learning algorithm which came out to have the highest 

performance metric for the scenario with significance level included inside the round bracket.  The symbol 

‘√ ’ indicates that the performance metric obtained by the selected learning algorithm was statistically 

significantly better than that obtained by the other learning algorithm. 

From Table 4-18, it can observed that for the baseline results, RIPPER generally performs better than 

C4.5 on extremely skewed datasets like the Mammography, oil and KDDcup-99 datasets while C4.5 

performs better than RIPPER for the reverse case. C4.5 builds a tree for the given dataset and effectively 

creates rules for all the classes in the dataset. While RIPPER which starts by building rules for a class 

which has the smallest number of examples leaves the largest class as default. So in case of two class 
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datasets, RIPPER only builds rules for the minority class. This seems to make RIPPER more biased 

towards the minority class when compared to C4.5 which helps in getting a better TP-rate on minority class 

when the order of imbalance is high. After under-sampling and SMOTEing or just SMOTEing, RIPPER 

generally gets a higher TP-rate for the minority class while C4.5, which is less biased towards the minority 

class, gets better F-values as in case of the Phoneme, Forest Cover and modified KDDcup-99 datasets. 

Table 4-18. Winners: C4.5 Against RIPPER 

Wrapper Results 
Dataset Performance 

metric 
Baseline 
Results SMOTE 

only 
Under-sampling 

& SMOTE 
Minority TP-rate C4.5(√ ) RIPPER(-) RIPPER(-) 
Minority F-value C4.5(√ ) C4.5(√ ) C4.5(√ ) Phoneme 
Majority F-value C4.5(-) C4.5(√ ) C4.5(√ ) 
Minority TP-rate C4.5(-) RIPPER(-) RIPPER(-) 
Minority F-value RIPPER(-) RIPPER(√ ) RIPPER(√ ) Satimage 
Majority F-value RIPPER(√ ) RIPPER(√ ) RIPPER(√ ) 
Minority TP-rate RIPPER(-) RIPPER(-) RIPPER(-) 
Minority F-value RIPPER(-) C4.5(-) RIPPER(-) Mammo-

graphy 
Majority F-value C4.5(-) C4.5(-) RIPPER(-) 
Minority TP-rate C4.5(√ ) C4.5(-) RIPPER(-) 
Minority F-value C4.5(√ ) C4.5(√ ) C4.5(√ ) Forest 

cover 
Majority F-value C4.5(√ ) C4.5(√ ) C4.5(√ ) 
Minority TP-rate C4.5(-) RIPPER(-) RIPPER(-) 
Minority F-value C4.5(-) RIPPER(-) RIPPER(-) Pima 

Indian 
Majority F-value RIPPER(-) C4.5(-) C4.5(-) 
Minority TP-rate RIPPER(-) RIPPER(-) RIPPER(-) 
Minority F-value RIPPER(-) RIPPER(-) RIPPER(-) Oil 
Majority F-value RIPPER(-) C4.5(-) RIPPER(-) 
Avg. Minority 
TP-rate RIPPER RIPPER RIPPER 

Avg. Minority 
F-value RIPPER C4.5 RIPPER 

KDDcup-
99 
Intrusion 
Detection Avg. Majority 

F-value RIPPER C4.5 RIPPER 
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4.7. Result Comparison 

In this subsection we compare the results obtained by our Wrapper Under-sample SMOTE Algorithm with 

those obtained in Chawla et al. [7] using the C4.5 decision tree classifier. Chawla et al. [7] used the Area 

Under the Curve (AUC) for ROC curves as a performance metric in the evaluation of the SMOTE 

technique. Note that they had hand picked the SMOTE percentage which gave them the best AUC measure 

over the 10 fold cross-validation test sets whereas in our case the test sets are never used in the search 

process for the under-sampling and SMOTE percentages. For generation of the ROC curves, a constant 

SMOTE percentage over all the 10 training sets was used and the under-sampling of the majority class was 

varied from 0% (no under-sampling) to 100% (zero majority class examples in training set) to obtain 

different points for the ROC curve. A particular under-sampling percentage was never sought in Chawla et 

al. [7] and was performed at irregular steps which were inconsistent across all the datasets, and so it was 

not possible to identify what under-sampling was used for a particular point on the ROC curve. Since we 

use the F-value as the performance metric, we have calculated the F-value for each point on the ROC curve 

from the TP rate, FP rate and the number of minority and majority class examples. In our case, since the 

under-sampling and SMOTE percentages are optimized for each fold, they differ across the 10 folds. So it 

was not reasonable to compare the average F-values over our 10 cross-validation folds with the F-values 

calculated from the ROC curves.  To make the comparison more compatible we have re-ran the 10 folds 

using the ‘mode’ of the under-sampling and SMOTE percentages obtained by our wrapper algorithm and 

obtained an averaged F-value over 10 test sets.  Table 4-19 and Table 4-20 show the comparison of our 

new results with the hand picked ones obtained by Chawla et al. [7]. 

From Table 4-19, one can see that the ‘mode’ of the SMOTE percentages selected by our wrapper 

Under-sample SMOTE algorithm match with the handed-picked SMOTE percentages for the Phoneme and 

the Forest cover datasets. Also the minority class average F-values obtained by the two methods are 

equivalent (0.784 & 0.773 for the phoneme dataset and 0.889 & 0.882 for the Forest cover datasets). 
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Table 4-19.  Comparison of Hand-picked Parameters with Under-sample SMOTE Algorithm 
Parameters (C4.5 as base classifier) 

Under-sample SMOTE Algorithm 
picked parameters (Mode) 

Hand-picked 
parameters [7] Datasets SMOTE 

percentage 
Under-sampling 

percentage 
SMOTE 

percentage 
Phoneme 100% 100% 100% 
Satimage 500% 100% 200% 
Mammography 100% 90% 400% 
Forest cover 300% 100% 300% 
Pima Indian 200% 100% 400% 
Oil 300% 100% 500% 

 

 Table 4-20. Comparison of Results between Hand-picked Parameters with Under-sample SMOTE 
Algorithm Picked Parameters (C4.5 as base classifier) 

Results using Wrapper selected 
SMOTE & under-sampling 

percentages  (Mode) 

Results using hand-picked 
SMOTE & under-sampling 

percentages [7] 
Datasets Average 

Minority 
class 

TP-rate 

Average 
Minority 

class 
F-value 

Average 
Majority 

class 
F-value 

Average 
Minority 

class 
TP-rate 

Average 
Minority 

class 
F-value 

Average 
Majority 

class 
F-value 

Phoneme 0.849 0.784 0.899 0.784 0.773 0.904 
Satimage 0.639 0.570 0.947 0.519 0.542 0.953 
Mammography 0.626 0.646 0.992 0.512 0.616 0.992 
Forest cover 0.904 0.889 0.991 0.868 0.882 0.991 
Pima Indian 0.773 0.653 0.755 0.869 0.656 0.704 
Oil 0.448 0.424 0.972 0.647 0.444 0.962 

 

For the Satimage dataset, our wrapper algorithm selected a much higher SMOTE percentage (500%) 

compared to the hand-picked SMOTE percentage (200%), and surprisingly our minority class TP-rates and 

F-values were better than those obtained by hand-picked method. For the Mammography dataset, our 

results were better than hand-picked results when our algorithm selected a lesser SMOTE percentage as 

compared to that selected by Chawla et al. [7]. It was for the Oil dataset, where our results were 

significantly lower than those obtained in [7] which selected 500% SMOTE for minority class. On the 

whole our wrapper algorithm had selected SMOTE percentage which gave comparable results to those by 

Chawla et al. [7]. Results in [7] should have been always better than ours as they were hand-picked, but in 

some cases where lower than our results. The reason for this might be because of the different performance 

measure Chawla et al. [7] were trying to optimize. 
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4.8. Results Using a Brute Force Search Method 

To cross check whether our heuristic search using under-sampling followed by SMOTE was valid in 

finding a good under-sampling and SMOTE mix for majority and minority classes, we searched the 

parameter space using a Brute Force Search Method, where a set of discrete valued combinations of under-

sampling and SMOTE percentages for majority and minority classes are tested. Since this process is 

extremely time consuming, the experimental runs were performed using the C4.5 learning algorithm only 

on two relatively small dissimilar datasets: the Phoneme and Mammography datasets. The SMOTE 

percentages were varied from 0% (no SMOTE) to 1000% in steps of 100% for the minority class and 

under-sampling percentages from 100% to 50% in steps of 10% for the majority class. So in all  

11 (SMOTE) x 6 (Under-sampling) = 66 combinations of SMOTE and under-sampling percentages were 

tested. For each of the 10 cross-validation folds, a five fold cross-validation wrapper search using the Brute 

Force method was performed using all of the 66 under-sampling and SMOTE percentage combinations. 

Note that the search is done using a wrapper based algorithm using Brute Force Method instead of using 

any heuristic. The under-sampling and SMOTE percentage combination which gave the highest F-value for 

the minority class on the five fold cross-validation was used on the whole training data and then evaluated 

on the test data. So a total of 10 sets of under-sampling and SMOTE percentages  and corresponding 

wrapper performance metrics were obtained for each of the 10 cross-validation folds which were then 

statistically compared with wrapper results obtained using our heuristic search. The baseline results for 

both search methods are identical as the same training/testing set pairs were used. 

Table 4-21 shows the results obtained using the brute force method and how they compare with the 

results obtained by search heuristic of Under-sample SMOTE Algorithm. One can see that the brute force 

method selects much higher percentages for under-sampling (50% and 54% average under-sampling 

percentage over 10 folds for the Phoneme and Mammography datasets) and SMOTE and gets better 

accuracies on the five-fold cross-validation training data as compared with the wrapper based algorithm, 

but it is not effective in boosting accuracy over the testing data. 
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Table 4-21.  Results Using Brute Force Method 

 Phoneme Mammography  
Wrapper Brute Force 250% 190% Average SMOTE 

percentage Wrapper Under-Sample 
SMOTE Algorithm 150% 180% 

Wrapper Brute Force 50% 54% Average under-sampling 
percentage Wrapper Under-Sample 

SMOTE Algorithm 89% 87% 

Wrapper Brute Force 0.912 0.652 
Wrapper Under-Sample 
SMOTE Algorithm 0.875 0.659 

% increase -4.26% 1.17% 
t-stat 3.310 -0.252 

Average Minority class 
TP-rate 

Significance  √ (worse) - 
Wrapper Brute Force 0.754 0.619 
Wrapper Under-Sample 
SMOTE Algorithm 0.780 0.634 

% increase 3.31% 2.42% 
t-stat -5.367 -0.832 

Average Minority class 
F-value 

significance √ - 
Wrapper Brute Force 0.863 0.990 
Wrapper Under-Sample 
SMOTE Algorithm 0.891 0.991 

% increase 3.14% 0.07% 
t-stat -5.893 -0.751 

Average Majority class 
F-value 

significance √ - 
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Figure 4-49. Comparison of Brute Force and 
Heuristic Search for Wrapper True Positive 

Rate on Phoneme Data 
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Figure 4-50. Comparison of Brute Force and 

Heuristic Search for Wrapper F-value on 
Phoneme Data 
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Figure 4-51. Comparison of Brute Force and 
Heuristic Search for Wrapper True Positive 

Rate on Mammography Data 
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Figure 4-52. Comparison of Brute Force and 

Heuristic Search for Wrapper F-value on 
Mammography Data 

 
From Table 4-21, Figure 4-51 and Figure 4-52 for the Phoneme dataset which had a smaller 

imbalance, one can see that the brute force method’s TP-rates were statistically significantly better than the 

TP-rates obtained by the Under-sample SMOTE algorithm, but also had a statistically significant reduction 

in F-values over both the classes which was not desirable. From Table 4-21, Figure 4-49 and Figure 4-50 

for the Mammography dataset, one can note that there was no statistical difference between the two result 

sets for all the measures, although the Under-sample SMOTE algorithm performed better than the brute 

force method by a getting higher average TP-rate over the minority class and average F-values over both 

the classes.  

Thus this seems to support our hypothesis about the heuristic of giving lesser importance to under-

sampling over the SMOTE, which also happens to conform with the theory that removing data may result 

in reduction in the amount of information and less accuracy, while the addition of new noise free data will 

always add more information leading to better accuracy. 
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CHAPTER 5 

CONCLUSION & FUTURE WORK 

From previous work [7], SMOTE was found to work really well in expanding the decision regions of 

classifiers for minority classes and increase the classifiers performance over minority examples on the 

unseen test data. However, the percentage of SMOTE performed was an important parameter as a smaller 

percentage of synthetic examples could result in less recall and a large percentage of synthetic examples 

could result in less precision, both of which were not desired. So in our study we have used the F-value as a 

performance metric for guiding the search process which incorporates both measures - Recall which gives 

us the measure of completeness of the classifier in predicting the actual minority class and Precision which 

gives us the measure of correctness of the classifier in predicting the actual minority class. Our wrapper 

Under-sample SMOTE algorithm performs five-fold cross-validation and uses the averaged F-value on five 

validation sets as representative of the F-value on the test data to guide the search through the parameter 

space of under-sampling and SMOTE percentages. The results show that our algorithm is able to 

successfully select the under-sampling percentages for the majority classes and SMOTE percentages for the 

minority classes for specific learning algorithm, which when used on the whole training data significantly 

improves the recall for the minority classes on the test data with a small amount of reduction in the F-value 

over the majority classes. The results also show that there is no clear benefit in under-sampling the majority 

classes as SMOTE alone can achieve similar results. The Brute Force results which perform heavy under-

sampling may improve recall on minority classes at the expense of reduced F-values (higher false positives) 

of minority and majority classes which is not desirable and thus undermines the importance of under-

sampling majority classes. 

For future work, more diverse machine learning algorithms should be used to evaluate our Under-

sample SMOTE algorithm. In a recent study by Batista et al [61] , they have experimented with various 
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sampling techniques and have found SMOTE  plus focused under-sampling using Tomek links [23] and 

Wilson’s Edited Nearest Neighbor Rule [62] give very good results. Since random under-sampling is found 

to have no apparent accuracy benefit, future work should use these focused under-sampling techniques 

along with SMOTE to see if there is any significant improvement in results compared to results in this 

study. Guo and Viktor [63] have found that giving more importance to the hard to classify examples from 

both minority and majority classes for creating synthetic examples is advantageous. Future work should use 

this information to extend SMOTE to ‘hard to classify examples’ from both classes. Also the parameter k – 

number of nearest neighbors used in SMOTE algorithm could happen to be an important parameter and 

more work should to done to confirm this hypothesis and if true it should be fine tuned automatically for 

each dataset and specific learning algorithm using the wrapper approach.  
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